Lecture 24: The Dictionary Attack and the
Rainbow-Table Attack on Password Protected Systems

Lecture Notes on “Computer and Network Security”

by Avi Kak (kak@purdue.edu)

May 19, 2020
3:35pm

(©2020 Avinash Kak, Purdue University

Goals:

e The Dictionary Attack

e Thwarting a dictionary attack with log scanning
e Cracking passwords with direct table lookup

e Cracking passwords with hash chains

e Cracking password with rainbow tables

e Password hashing schemes

Com,

puter and Network Security by Avi Kak

Lecture 2/

CONTENTS

24.7

Homework Problems

Section Title Page
24.1 | The Dictionary Attack 8]
24.2 | The Password File Embedded in | [12
the Conficker Worm
24.3 | Thwarting the Dictionary Attack | [14]
with Log Scanning
24.4 | Cracking Passwords with Hash 28
Chains and Rainbow Tables
24.5 | Password Hashing Schemes 41l
24.6 | Federated Identity Management H2]

omputer and Network Security by Avi Kak Lecture 24

Back to [LOC]

24.1 THE DICTIONARY ATTACK

e Scanning blocks of IP addresses for vulnerabilities at the ports
that are open is in many cases the starting point for breaking
into a network.

e If you are not behind a firewall, it is easy to see such ongoing
scans. All you have to do is to look at the access or the
authorization logs of the services offered by a host in your
network. You will notice that the machines in your
network are being constantly scanned for open
ports and possible vulnerabilities at those ports.

e In this lecture I will focus on how people try to break into port
22 that is used for the SSH service. This is a critical service
since its use goes way beyond just remote login for terminal
sessions. It is also used for secure pickup of email from a
mail-drop machine and a variety of other applications.

e The most commonly used ploy to break into port 22 is to mount
what is referred as a dictionary attack on the port. In a
dictionary attack, the bad guys try a large number of commonly
used names as possible account names on the target machine

Com,

puter and Network Security by Avi Kak Lecture 24

and, should they succeed in stumbling into a name for which
there is actually an account on the target machine, they then
proceed to try a large number of commonly used passwords for
that account. [An attack closely related to the dictionary attack is known as the brute-force
attack in which a hostile agent systematically tries all possibilities for usernames and passwords. Since the
size of the search space in a brute-force attack increases exponentially with the lengths of the usernames and

passwords used in the attack, it is not generally feasible to mount such attacks through the internet.]

If you are logged into a Ubuntu machine, you can see these
attempts on an ongoing basis by running the following
command line in a separate window

tail -f /var/log/auth.log | sed G

[will now show just a two minute segment of this log
produced not too long ago on the host
moonshine.ecn.purdue.edu. To make it easier to see the
usernames being tried by the attacker, I have made a manual
entry in a separate line for just the username that the attacker
tries in the next break-in attempt. Note that the third line
shown for each break-in attempt is truncated because it is much
too long. Nonetheless, you can see all of the relevant
information in what is displayed. This scan was mounted from
the TP address 61.163.228.117. If you enter this [P address in
the query window of http://www.ip2location.com/ or
http://geoiptool.com, you will see that the attacker is
logged into a network that belongs to the The Postal

4

http://www.ip2location.com/
http://geoiptool.com

Computer and Network Security by Avi Kak

Lecture 2/

Information Technology Office in the city of Henan in China.

username tried:

Apr 10 13:59:59
Apr 10 13:59:59
Apr 10 13:59:59
Apr 10 14:00:01

username tried:

Apr 10 14:00:08
Apr 10 14:00:08
Apr 10 14:00:08
Apr 10 14:00:10

username tried:

Apr 10 14:00:17
Apr 10 14:00:17
Apr 10 14:00:17
Apr 10 14:00:19

username tried:

Apr 10 14:00:26
Apr 10 14:00:26
Apr 10 14:00:26
Apr 10 14:00:29

username tried:

Apr 10 14:00:36
Apr 10 14:00:36
Apr 10 14:00:36
Apr 10 14:00:38

username tried:

Apr 10 14:00:46
Apr 10 14:00:46
Apr 10 14:00:46
Apr 10 14:00:47

username tried:

Apr 10 14:00:55
Apr 10 14:00:55
Apr 10 14:00:55
Apr 10 14:00:57

username tried:

Apr 10 14:01:05
Apr 10 14:01:05

staff

moonshine
moonshine
moonshine
moonshine

sales

moonshine
moonshine
moonshine
moonshine

recruit

moonshine
moonshine
moonshine
moonshine

alias

moonshine
moonshine
moonshine
moonshine

office

moonshine
moonshine
moonshine
moonshine

samba

moonshine
moonshine
moonshine
moonshine

tomcat

moonshine

moonshine

moonshine

moonshine

webadmin

moonshine
moonshine

sshd [32057] :
sshd [32057] :
sshd [32057] :
sshd [32057] :

sshd [32059] :
sshd [32059] :
sshd [32059] :
sshd [32059] :

sshd [32061] :
sshd [32061] :
sshd[32061] :
sshd [32061] :

sshd [32063] :
sshd [32063] :
sshd [32063] :
sshd [32063] :

sshd [32065] :
sshd [32065] :
sshd [32065] :
sshd [32065] :

sshd [32067] :
sshd [32067] :
sshd [32067] :
sshd [32067] :

sshd [32069] :
sshd [32069] :
sshd [32069] :
sshd [32069] :

sshd [32071] :
sshd[32071] :

Invalid user staff from 61.163.228.117

pam_unix(sshd:auth): check pass; user unknown

pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser=
Failed password for invalid user staff from 61.163.228.117 port 40805 ssh2

Invalid user sales from 61.163.228.117

pam_unix(sshd:auth): check pass; user unknown

pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser=
Failed password for invalid user sales from 61.163.228.117 port 41066 ssh2

Invalid user recruit from 61.163.228.117

pam_unix(sshd:auth): check pass; user unknown

pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser=
Failed password for invalid user recruit from 61.163.228.117 port 41303 ssh2

Invalid user alias from 61.163.228.117

pam_unix(sshd:auth): check pass; user unknown

pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser=
Failed password for invalid user alias from 61.163.228.117 port 41539 ssh2

Invalid user office from 61.163.228.117

pam_unix(sshd:auth): check pass; user unknown

pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser=
Failed password for invalid user office from 61.163.228.117 port 41783 ssh2

Invalid user samba from 61.163.228.117

pam_unix(sshd:auth): check pass; user unknown

pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser=
Failed password for invalid user samba from 61.163.228.117 port 42027 ssh2

Invalid user tomcat from 61.163.228.117

pam_unix(sshd:auth): check pass; user unknown

pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser=
Failed password for invalid user tomcat from 61.163.228.117 port 42247 ssh2

Invalid user webadmin from 61.163.228.117
pam_unix(sshd:auth): check pass; user unknown

rh

rhq

rh

rh

rh

rhq

rh

Computer and Network Security by Avi Kak

Lecture 2/

Apr 10 14:01:05
Apr 10 14:01:07

username tried:

Apr 10 14:01:14
Apr 10 14:01:14
Apr 10 14:01:14
Apr 10 14:01:16

username tried:

Apr 10 14:01:23
Apr 10 14:01:23
Apr 10 14:01:23
Apr 10 14:01:25

username tried:

Apr 10 14:01:32
Apr 10 14:01:32
Apr 10 14:01:32
Apr 10 14:01:35

username tried:

Apr 10 14:01:42
Apr 10 14:01:42
Apr 10 14:01:42
Apr 10 14:01:45

username tried:

Apr 10 14:01:52
Apr 10 14:01:52
Apr 10 14:01:52
Apr 10 14:01:54

moonshine
moonshine

spam

moonshine
moonshine
moonshine
moonshine

virus

moonshine
moonshine
moonshine
moonshine

cyrus

moonshine
moonshine
moonshine
moonshine

oracle

moonshine
moonshine
moonshine
moonshine

mechael

moonshine
moonshine
moonshine
moonshine

sshd [32071] :
sshd[32071] :

sshd[32073] :
sshd [32073] :
sshd [32073] :
sshd [32073] :

sshd [32075] :
sshd [32075] :
sshd [32075] :
sshd [32075] :

sshd [32077] :
sshd [32077] :
sshd [32077] :
sshd [32077] :

sshd [32079] :
sshd [32079] :
sshd [32079] :
sshd[32079] :

sshd[32081] :
sshd [32081] :
sshd[32081] :
sshd [32081] :

pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser=
Failed password for invalid user webadmin from 61.163.228.117 port 42488 ssh2

Invalid user spam from 61.163.228.117

pam_unix(sshd:auth): check pass; user unknown

pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser=
Failed password for invalid user spam from 61.163.228.117 port 42693 ssh2

Invalid user virus from 61.163.228.117

pam_unix(sshd:auth): check pass; user unknown

pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser=
Failed password for invalid user virus from 61.163.228.117 port 42917 ssh2

Invalid user cyrus from 61.163.228.117

pam_unix(sshd:auth): check pass; user unknown

pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser=
Failed password for invalid user cyrus from 61.163.228.117 port 43144 ssh2

Invalid user oracle from 61.163.228.117

pam_unix(sshd:auth): check pass; user unknown

pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser=
Failed password for invalid user oracle from 61.163.228.117 port 43384 ssh2

Invalid user michael from 61.163.228.117

pam_unix(sshd:auth): check pass; user unknown

pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser=
Failed password for invalid user michael from 61.163.228.117 port 43634 ssh2

e In mounting a dictionary attack, the bad guys focus particularly

on account names that a target machine could be expect to

have with high probability. These include:

root

webmaster

webadmin

rh

rh

rhq

rh

rhq

rh

Computer and Network Security by Avi Kak Lecture 24

linux
admin
ftp
mysql
oracle
guest
postgres
test
sales
staff
user

and several others

e All of the log entries I showed earlier were for accounts that do
not exist on moonshine.ecn.purdu.edu. What I show next is a
concerted attempt to break into the machine through the root
account that does exist on the machine. This attack is from the
[P address 202.99.32.53. As before, if you enter this IP address
in the query window of http://www.ip2location.com/ or
http://www.geoiptool.com/, you will see that the attacker
is logged into a network that belongs to the CNCGroup Beijing
Province Network in Beijing, China. Note that this is just a
three minute segment of the log file.

Apr 10 16:23:20 moonshine sshd[32301]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rh
Apr 10 16:23:22 moonshine sshd[32301]: Failed password for root from 202.99.32.53 port 42273 ssh2

Apr 10 16:23:29 moonshine sshd[32303]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rh

http://www.ip2location.com/
http://www.geoiptool.com/

Computer and Network Security by Avi Kak Lecture 24
Apr 10 16:23:32 moonshine sshd[32303]: Failed password for root from 202.99.32.53 port 42499 ssh2
Apr 10 16:23:39 moonshine sshd[32305]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0
Apr 10 16:23:41 moonshine sshd[32305]: Failed password for root from 202.99.32.53 port 42732 ssh2
Apr 10 16:23:48 moonshine sshd[32307]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0
Apr 10 16:23:50 moonshine sshd[32307]: Failed password for root from 202.99.32.53 port 42976 ssh2
Apr 10 16:23:58 moonshine sshd[32309]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0
Apr 10 16:23:59 moonshine sshd[32309]: Failed password for root from 202.99.32.53 port 43208 ssh2
Apr 10 16:24:06 moonshine sshd[32311]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0
Apr 10 16:24:08 moonshine sshd[32311]: Failed password for root from 202.99.32.53 port 43439 ssh2
Apr 10 16:24:15 moonshine sshd[32313]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0
Apr 10 16:24:17 moonshine sshd[32313]: Failed password for root from 202.99.32.53 port 43659 ssh2
Apr 10 16:24:24 moonshine sshd[32315]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0
Apr 10 16:24:26 moonshine sshd[32315]: Failed password for root from 202.99.32.53 port 43901 ssh2
Apr 10 16:24:33 moonshine sshd[32317]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0
Apr 10 16:24:35 moonshine sshd[32317]: Failed password for root from 202.99.32.53 port 44128 ssh2
Apr 10 16:24:42 moonshine sshd[32319]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0
Apr 10 16:24:44 moonshine sshd[32319]: Failed password for root from 202.99.32.53 port 44352 ssh2
Apr 10 16:24:51 moonshine sshd[32321]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0
Apr 10 16:24:53 moonshine sshd[32321]: Failed password for root from 202.99.32.53 port 44577 ssh2
Apr 10 16:25:00 moonshine sshd[32323]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0
Apr 10 16:25:01 moonshine sshd[32323]: Failed password for root from 202.99.32.53 port 44803 ssh2
Apr 10 16:25:09 moonshine sshd[32325]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0
Apr 10 16:25:11 moonshine sshd[32325]: Failed password for root from 202.99.32.53 port 45024 ssh2
Apr 10 16:25:18 moonshine sshd[32327]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0
Apr 10 16:25:20 moonshine sshd[32327]: Failed password for root from 202.99.32.53 port 45269 ssh2
Apr 10 16:25:27 moonshine sshd[32329]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0
Apr 10 16:25:29 moonshine sshd[32329]: Failed password for root from 202.99.32.53 port 45496 ssh2
Apr 10 16:25:36 moonshine sshd[32331]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0
Apr 10 16:25:38 moonshine sshd[32331]: Failed password for root from 202.99.32.53 port 45725 ssh2
Apr 10 16:25:45 moonshine sshd[32333]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0
Apr 10 16:25:47 moonshine sshd[32333]: Failed password for root from 202.99.32.53 port 45951 ssh2
Apr 10 16:25:54 moonshine sshd[32335]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0
Apr 10 16:25:56 moonshine sshd[32335]: Failed password for root from 202.99.32.53 port 46186 ssh2
Apr 10 16:26:03 moonshine sshd[32337]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0
Apr 10 16:26:05 moonshine sshd[32337]: Failed password for root from 202.99.32.53 port 46402 ssh2
Apr 10 16:26:12 moonshine sshd[32339]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0
Apr 10 16:26:14 moonshine sshd[32339]: Failed password for root from 202.99.32.53 port 46637 ssh2
Apr 10 16:26:21 moonshine sshd[32341]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0
Apr 10 16:26:23 moonshine sshd[32341]: Failed password for root from 202.99.32.53 port 46859 ssh2

tty=ssh

tty=ssh

tty=ssh

tty=ssh

tty=ssh

tty=ssh

tty=ssh

tty=ssh

tty=ssh

tty=ssh

tty=ssh

tty=ssh

tty=ssh

tty=ssh

tty=ssh

tty=ssh

tty=ssh

tty=ssh

tty=ssh

ruser=

ruser=

ruser=

ruser=

ruser=

ruser=

ruser=

ruser=

ruser=

ruser=

ruser=

ruser=

ruser=

ruser=

ruser=

ruser=

ruser=

ruser=

ruser=

rhq

rhq

rh

rh

rhq

rh

rh

rhq

rh

rh

rhq

rh

rh

rhq

rh

rh

rh

rhq

rh

Computer and Network Security by Avi Kak Lecture 24

e As long as we are on the subject of looking at the
/var/log/auth.log log file, in the same file you will also see
numerous break-in entries that look like those shown below.
These entries contain the special entry “failed - POSSIBLE
BREAK-IN ATTEMPT! . Although such entries look alarming at
first sight, they are no more sinister than the examples I showed
earlier. What triggers this particular form of log entry is when
the local sshd daemon cannot reconcile the domain name from
where SSH connection request is coming from with the IP
address contained in the connection request. Shown below is a
small segment of such an attack on moonshine.ecn.purdue.edu
from the IP address 78.153.210.68. As before, if you enter this
address in the query window of
http://www.ip2location.com/, you will discover that the
attacker is logged into the network that belongs to PEM VPS
Hosting Servers in the city of Carlow, Ireland. The attack
represents a concerted attempt to break into the root account
by guessing the password. I have abbreviated the first line of
each attempt as indicated by the sequence of dots in such lines.
An actual first line of each attempt looks like the following:

Apr 10 21:42:45 moonshine sshd[787]: reverse mapping checking \

getaddrinfo for 210-68.colo.sta.blacknight.ie [78.153.210.68] \
failed - POSSIBLE BREAK-IN ATTEMPT!

Here is just a two minute segment of such an attack:

Apr 10 21:41:58 moonshine sshd[757]: reverse mapping checking [78.153.210.68] failed - POSSIBLE BREAK-IN ATTEMPT!
Apr 10 21:41:58 moonshine sshd[757]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhos
Apr 10 21:41:59 moonshine sshd[757]: Failed password for root from 78.153.210.68 port 43828 ssh2

Apr 10 21:42:01 moonshine sshd[759]: reverse mapping checking [78.153.210.68] failed - POSSIBLE BREAK-IN ATTEMPT!

http://www.ip2location.com/

Computer and Network Security by Avi Kak

Lecture 2/

Apr 10 21:42:01

Apr

Apr
Apr
Apr

Apr
Apr
Apr

Apr
Apr
Apr

Apr
Apr
Apr

Apr
Apr
Apr

Apr
Apr
Apr

Apr
Apr
Apr

Apr
Apr
Apr

Apr
Apr
Apr

Apr
Apr
Apr

Apr
Apr
Apr

Apr
Apr
Apr

10

10
10
10

10
10
10

10
10
10

10
10
10

10
10
10

10
10
10

10
10
10

10
10
10

10
10
10

10
10
10

10
10
10

10
10
10

21:

21:
21:
21:

21:
21:
21:

21:
21:
21:

21:
21:
21:

21:
21:
21:

21:
21:
21:

21:
21:
21:

21:
21:
21:

21:
21:
21:

21:
21:
21:

21:
21:
21:

21:
21:
21:

42:

42:
42:
42:

42:
42:
42:

42:
42:
42:

42:
42:
42:

42:
42:
42:

42:
42:
42:

42:
42:
42:

42:
42:
42:

42:
42:
42:

42:
42:
42:

42:
42:
42:

42:
42:
140

42

02

03
04
06

08
08
09

11
11
12

14
14
16

17
17
19

20
20
22

23
23
25

27
27
29

30
30
32

33
33
34

36
36
37

38
38

moonshine
moonshine

moonshine
moonshine
moonshine

moonshine
moonshine
moonshine

moonshine
moonshine
moonshine

moonshine
moonshine
moonshine

moonshine
moonshine
moonshine

moonshine
moonshine
moonshine

moonshine
moonshine
moonshine

moonshine
moonshine
moonshine

moonshine
moonshine
moonshine

moonshine
moonshine
moonshine

moonshine
moonshine
moonshine

moonshine
moonshine
moonshine

sshd [759] :
sshd[759] :

sshd[761]:
sshd[761]:
sshd[761]:

sshd [763] :
sshd[763] :
sshd [763]:

sshd [765] :
sshd[765] :
sshd [765] :

sshd[767] :
sshd [767] :
sshd [767]:

sshd[769] :
sshd [769] :
sshd[769] :

sshd[771]:
sshd [771]:
sshd[771]:

sshd [773]:
sshd[773]:
sshd[773]:

sshd [775] :
sshd[775] :
sshd [775] :

sshd [777]:
sshd[777]:
sshd [777]:

sshd[779] :
sshd [779]:
sshd [779] :

sshd[781]:
sshd [781]:
sshd[781]:

sshd[783] :
sshd [783]:
sshd[783] :

pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhos!
Failed password for root from 78.153.210.68 port 43948 ssh2

reverse mapping checking [78.153.210.68] failed - POSSIBLE BREAK-IN ATTEMPT!
pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhos!
Failed password for root from 78.153.210.68 port 44058 ssh2

reverse mapping checking [78.153.210.68] failed - POSSIBLE BREAK-IN ATTEMPT!
pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhos!
Failed password for root from 78.153.210.68 port 44210 ssh2

reverse mapping checking [78.153.210.68] failed - POSSIBLE BREAK-IN ATTEMPT!
pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhos!
Failed password for root from 78.153.210.68 port 44330 ssh2

reverse mapping checking [78.1563.210.68] failed - POSSIBLE BREAK-IN ATTEMPT!
pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost
Failed password for root from 78.153.210.68 port 44440 ssh2

reverse mapping checking [78.163.210.68] failed - POSSIBLE BREAK-IN ATTEMPT!
pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhos!
Failed password for root from 78.153.210.68 port 44568 ssh2

reverse mapping checking [78.163.210.68] failed - POSSIBLE BREAK-IN ATTEMPT!
pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhos!
Failed password for root from 78.153.210.68 port 44698 ssh2

reverse mapping checking [78.153.210.68] failed - POSSIBLE BREAK-IN ATTEMPT!
pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhos!
Failed password for root from 78.153.210.68 port 44818 ssh2

reverse mapping checking [78.153.210.68] failed - POSSIBLE BREAK-IN ATTEMPT!
pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhos!
Failed password for root from 78.153.210.68 port 44928 ssh2

reverse mapping checking [78.1563.210.68] failed - POSSIBLE BREAK-IN ATTEMPT!
pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhos!
Failed password for root from 78.153.210.68 port 45089 ssh2

reverse mapping checking [78.163.210.68] failed - POSSIBLE BREAK-IN ATTEMPT!
pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost
Failed password for root from 78.153.210.68 port 45186 ssh2

reverse mapping checking [78.163.210.68] failed - POSSIBLE BREAK-IN ATTEMPT!
pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost
Failed password for root from 78.153.210.68 port 45299 ssh2

reverse mapping checking [78.163.210.68] failed - POSSIBLE BREAK-IN ATTEMPT!
pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhost
Failed password for root from 78.153.210.68 port 45405 ssh2

10

Computer and Network Security by Avi Kak Lecture 24
Apr 10 21:42:41 moonshine sshd[785]: reverse mapping checking [78.153.210.68] failed - POSSIBLE BREAK-IN ATTEMPT!
Apr 10 21:42:41 moonshine sshd[785]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhos!
Apr 10 21:42:43 moonshine sshd[785]: Failed password for root from 78.153.210.68 port 45521 ssh2
Apr 10 21:42:45 moonshine sshd[787]: reverse mapping checking [78.153.210.68] failed - POSSIBLE BREAK-IN ATTEMPT!
Apr 10 21:42:45 moonshine sshd[787]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhos!
Apr 10 21:42:47 moonshine sshd[787]: Failed password for root from 78.153.210.68 port 45663 ssh2
Apr 10 21:42:48 moonshine sshd[789]: reverse mapping checking [78.153.210.68] failed - POSSIBLE BREAK-IN ATTEMPT!
Apr 10 21:42:48 moonshine sshd[789]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhos
Apr 10 21:42:49 moonshine sshd[789]: Failed password for root from 78.153.210.68 port 45778 ssh2
Apr 10 21:42:51 moonshine sshd[791]: reverse mapping checking [78.153.210.68] failed - POSSIBLE BREAK-IN ATTEMPT!
Apr 10 21:42:51 moonshine sshd[791]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhos
Apr 10 21:42:53 moonshine sshd[791]: Failed password for root from 78.153.210.68 port 45882 ssh2
Apr 10 21:42:54 moonshine sshd[793]: reverse mapping checking [78.153.210.68] failed - POSSIBLE BREAK-IN ATTEMPT!
Apr 10 21:42:54 moonshine sshd[793]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhos
Apr 10 21:42:55 moonshine sshd[793]: Failed password for root from 78.153.210.68 port 46011 ssh2
Apr 10 21:42:57 moonshine sshd[795]: reverse mapping checking [78.153.210.68] failed - POSSIBLE BREAK-IN ATTEMPT!
Apr 10 21:42:57 moonshine sshd[795]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0 tty=ssh ruser= rhos!
Apr 10 21:42:58 moonshine sshd[795]: Failed password for root from 78.153.210.68 port 46123 ssh2

11

Computer and Network Security by Avi Kak Lecture 24

Back to [TOC]

24.2 THE PASSWORD FILE EMBEDDED
IN THE CONFICKER WORM

e When an attacker who has mounted a dictionary attack does
find an installed account on the victim machine, the next
challenge for the attacker is to gain entry into the account by
making guesses at the password for the account. For example,
the last two segments of the auth.log file shown in the
previous section are for two concerted attempts by two different
attackers to guess the password for the root account on

moonshine.ecn.purdue.edu.

e In the context of guessing the passwords, it is interesting to
examine the guesses that are embedded in the binary for the
Conficker worm that we discussed in Lecture 22. Here are the
240 guesses that were taken from

http://onecare.live.com/standard/en-us/virusenc/virusencinfo.htm?VirusName=Worm:Win32/Conficker.B

123 1234 12345 123456
1234567 12345678 123456789 1234567890
123123 12321 123321 123abc
123qwe 123asd 1234abcd 1234qwer
1q2w3e alb2c3 admin Admin
administrator nimda qwewq qweewq
qwerty qweasd asdsa asddsa
asdzxc asdfgh qweasdzxc qlw2e3
qazwsx qazwsxedc ZXCXZ ZXCCXZ
zxcvb zxcvbn passwd password
Password login Login pass
mypass mypassword adminadmin root

12

 http://onecare.live.com/standard/en-us/virusenc/virusencinfo.htm?VirusName=Worm:Win32/Conficker.B

Computer and Network Security by Avi Kak

Lecture 2/

rootroot
temptemp
passwordl
admini2
pass123
qwel23
home123
sample
nopass
temporary
lotus
computer
share
shadow
security
codeword
exchange
access
anything
files
freedom
market
controller
job

sql

qaq

XXXX
22222
321
7654321
0

00000

1

11111

2

22222

3

33333

4

44444

5

555565

6

66666

7

7T

8

88888

9

99999

test
foofoo
passwordl2
admin123
root123
test123
work123
example
nopassword
manager
database
server
superuser
system
desktop
nobody
explorer
domain
unknown
academia
forever
private
intranet
foo

aaa
9999
XXXXX
fuck
4321
87654321
00

00000

11
111111
22
222222
33
333333
44
444444
55
555555
66
666666
7
7777
88
883888
99
999999

testtest
foobar
password123
passl
pwi23
temp123
boss123
internet
nothing
business
backup
secret
supervisor
public
changeme
cluster
campus
letmein
monitor
account
cookie
games
work
web
aaaa
99999
zZZ

12

54321
987654321
000
0000000
111
1111111
222
2222222
333
3333333
444
4444444
5565
5555555
666
6666666
T
777777
888
8888888
999
9999999

temp
default
adminl
passi2
abc123
mypcl123
lovel23
Internet
ihavenopass
oracle
owner
super
office
secure
codename
customer
money
letitbe
windows
student
coffee
killer
home
file
aaaaa
XXX

ZZZZ

21
654321
0987654321
0000
00000000
1111
11111111
2222
22222222
3333
33333333
4444
44444444
5555
55555555
6666
66666666
TrTT
777777
8888
88388888
9999
99999999

13

omputer and Network Security by Avi Kak Lecture 24

Back to [TOC]

24.3 THWARTING THE DICTIONARY
ATTACK WITH LOG SCANNING

e Before getting to the subject of log scanning for protecting a
computer /network against a dictionary attack, I should say
quickly that if, say, the computer you want to protect is at your
home and you want to be able to SSH into it from work without
allowing others to be able to do the same, just a couple of
entries in the /etc/hosts.allow and the /etc/hosts.deny files
would keep all intruders at bay.

/etc/hosts.allow : sshd: XXX.XXX.XXX.XXX

/etc/hosts.deny : ALL: ALL

where xxx.xxx.xxx.xxx is the IP address from where you wish to
connect to your home machine. Since /etc/hosts.allow takes
precedence over /etc/hosts.deny , the above two entries will
ensure that only you will be allowed SSH access into the
machine.

e Let’s now consider a more general situation of detecting
repeated break-in attempts and temporarily (or, sometimes,
permanently) blacklisting IP addresses from where the attacks
are emanating.

14

Computer and Network Security by Avi Kak Lecture 24

e Until recently, DenyHosts was the most popular tool used for
keeping an eye on the sshd server access logs (in
/var/log/auth.log on Linux machines). DenyHosts, however,
was removed from Ubuntu distributions of Linux sometime in
2014 for “unaddressed security issues” and other reasons.

e As far as the Linux platforms are concerned, Fail2Ban is now
the most commonly used tool for intrusion prevention through
10g Scanning. [According to the Wikipedia page on Fail2Ban, the development of Fail2Ban has been
led by Cyril Jaquier, Yaroslav Halchenko, Daniel Black, Steven Hiscocks, and Arturo 'Buanzo’ Busleiman as

an opensource project. DenyHosts was created by Phil Schwartz.]

e While both Fail2Ban and DenyHosts detect intrusion attempts
by keeping track of the number of login attempts (during a time
interval whose length in set is the config file), there is a
fundamental difference in how the two tools keep the blacklisted
[P addresses at bay. With Fail2Ban, a blacklisted IP address is
kept out by adding a new rule to the iptables firewall. [see Lecture 15
oniptables.] O the other hand, DenyHosts places a blacklisted 1P
address in the /etc/hosts.deny file. Subsequently, with both
tools, no further SSH connections from the same IP address
would be honored — at least until the expiration of a certain
pre-set time interval. [Depending on the config options you set, Fail2Ban would be happy to
just send you a notification (that is, without banning the IP address) when it sees too many unsuccessful
attempts at entry. As you will soon see, by using regex based filters, Fail2Ban can also try to detect malicious
behaviors by the connections made by TP addresses (say, for downloading web pages) and subsequently it can

take any action you wish vis-a-vis those IP addresses.]

15

Computer and Network Security by Avi Kak Lecture 2

e You may think there is a bit of irony involved in making future
intrusion prevention decisions on the basis of unsuccessful
attempts in the past. Let’s say an intruder has successfully
managed to break into a machine as root the very first time. It
is safe to assume that such an intruder would immediately
eliminate all signs of his/her entry into the system. So, one
might say, with log scanning of the sort used in Fail2Ban and
DenyHosts, your security decision is based more on the actions
of a clumsy thief who is unsuccessful and not on the actions of
those who may have caused you serious harm in the past.

e However, since it is reasonable to assume that even a successful
thief may need to make a few attempts before hitting the
jackpot, it makes sense to use tools like Fail2Ban and
DenyHosts.

e DenyHost was created exclusively for monitoring the SSHD
access log files.

e On the other hand, one of the best things about
Fail2Ban is its versatility. It can block network access to
just about any application that creates a log file for incoming
connection requests. It’s worth your while to spend a few
minutes poring over its config file /etc/fail2ban/jail.conf and
to see its different sections, as delineated by ‘[application
name]’, in order to get a sense of the range of applications for

16

Computer and Network Security by Avi Kak Lecture 24

which you can trap misbehaving IP addresses. By the way, you
can also specify additional server applications — applications
that are of your own making and that are not currently
mentioned in the config file — if you want to monitor and
control network access to them with Fail2Ban. All you have to
do is to enter a few lines of text in the config files. [raizpan is so
versatile that, even for the same server application running in your computer, it can identity IP addresses
that are engaged in different malicious activities and, depending on what activity is involved, it can take
different actions. If you examine the file jail.conf, you will see entries for an application that is named
[apache-badbots] that monitors accesses to HT'TP and HTTPS in order to catch intruders that make
seemingly ordinary web accesses but for the sole purpose of mining email addresses from the web pages being
doled out. Fail2Ban detects activities with the help of filters based on regular expressions. A certain number
of these filters are predefined in the /etc/fail2ban/ directory. However, you can create your own filters to

supersede those that come predefined or that are new for new kinds of behaviors by malicious hosts.]

e You can install Fail2Ban with apt-get or through your Synaptic
Package Manager. By default, it will only monitor the log
entries in the /var/log/auth.log file. However, as mentioned in
the previous bullet, you can monitor network attacks on just
about any server application running in your computer as long
as it spits out a log file for the incoming requests for
connections. [You enable log monitoring for an application by inserting the line ‘enabled = true’ in

the relevant section of the file /etc/fail2ban/jail.local. By default, enabled is set to true for SSHD.]

e Fail2Ban is written in Python and all of its files are in the
directory /etc/fail2ban. That directory and its subdirectories
contain a number of config files that can be used to specify

17

Computer and Network Security by Avi Kak Lecture 24

different criteria for trapping IP addresses that make intrusion
attempts (and that engage in malicious behaviors) and for
specifying the actions to be taken for the blacklisted addresses.
Execute ‘man jail.conf’ to see the man page regarding the
different configuration options.

e The act of installing Fail2Ban also enables it on your machine.
You must however customize its behavior for your specific host.
To verify that Fail2Ban is up and running, you can execute

sudo fail?ban-client status

It should return:

Status
| - Number of jail: 1
‘-~ Jail 1list: sshd

e Another way to see that you have successfully installed
Fail2Ban is by checking your iptables firewall rules. For
example, assuming that the chains in your firewall were empty
to begin with, if you execute the command ‘sudo iptables -L’
after installing Fail2Ban, you should see

Chain INPUT (policy ACCEPT)
target prot opt source destination
f2b-sshd tcp -- anywhere anywhere multiport dports ssh

Chain FORWARD (policy ACCEPT)
target prot opt source destination

18

Computer and Network Security by Avi Kak Lecture 24

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

Chain f2b-sshd (1 references)
target prot opt source destination
RETURN all -- anywhere anywhere

Note, in particular, the jump to the ‘user-defined’ chain
f2b-sshd action inserted by Fail2Ban in the predefined INPUT
chain of the filter table of the firewall. [vou may wish to review Lecture 15 at this
point if you do not remember that ‘filter’ is one of the four tables in an iptables based firewall and that this
table has three predefined chains: INPUT, OUTPUT and,FORWARDl IIl tlliS marnner, Elll
incoming packets would be first subject to the rules in the
f2b-sshd chain and those that are not trapped by any of the
rules in that chain would be sent back to be processed by the
rest of the rules in the INPUT chain. That we can say on
account of the definition of the f2b-sshd chain at the bottom of
the output At the moment there are no restrictions on any IP
addresses in the £2b-sshd chain.

o [f all you want from Fail2Ban is for it to monitor SSH access
(and to ban offending IP addresses) on port 22, you need to
make only a very small number of changes — six or fewer — to
just one config file. However, as mentioned in the config file
/etc/fail2ban/jail.conf, you must first create its copy with the
name /etc/fail2ban/jail.local. All of your customizations
must be in the “local” version of the config file. [raizsan is programmed

to first parse the “.conf” files and, subsequently, the “.local” files. In this manner, any customizations in the

“local” files override the corresponding entries in the “.conf” files. This ploy allows the “.conf” files to be

19

Computer and Network Security by Avi Kak Lecture 24

changed with upgrades to the software without losing the user-specified customization information.] The
small number of changes you'd need to make in
/etc/fail2ban/jail.local are likely to be in the following lines
(I have shown the entries in my install of Fail2Ban):

bantime = 3600

findtime = 3600

maxretry = 5

mta = sendmail

destemail = root@localhost

action = %(action_mwl)s

Here is a description of what these parameters mean: The config parameter
bantime specifies in seconds the duration of time for which a blacklisted IP address is denied further
access. The config parameters findtime and maxtry are used together to decide when to blacklist an
IP address. If the intruder makes more than maxtry attempts during a findtime period of time, the
IP address is quarantined for the duration set by bantime. The parameter mta specifies the mail
transport agent to use for sending an email notification to a designated person/admin when an IP
address is blacklisted. This notification is sent to the account specified by the parameter destemail.
Finally, the parameter action, as you would guess, tells Fail2Ban what to with an IP address that
meets the repeat access conditions as set by the findtime and the maxtry parameters. In most cases,
you’d want those addresses to be banned for the duration set by bantime. This action corresponds to

)

the choice “action_” inside the curly brackets for the action entry shown above. However, if you
want that a notification be also sent to the account set by destemail, you would need to choose
“actionmw” for what goes inside the curly brackets. Yet another option for the same is
“actionmwl”. With the “action mw” choice, the email notification will include a “whois” report on

the intruding host. And, with “actionmwl”, the email notification will include relevant log lines.

20

Com,

puter and Network Security by Avi Kak Lecture 24

e Since, to the best of what I know, DenyHosts continues to be

rather widely deployed, the rest of this section is devoted to
that tool.

With regard to how DenyHosts works, in addition to entering a
blacklisted IP address in in the /etc/hosts.deny file, the
blacklisted IP addresses are also recorded in in a few more files
elsewhere in your directory system for the purpose of
synchronizing your blacklisted IP addresses with similar such
addresses collected by other hosts in the internet if you have the
synchronization option turned on in the config files — see the
end of this section for the names of these files. As to how may
attempts at breaking in should qualify for blacklisting an IP
address can be set by you in the configuration file of DenyHosts.

The main config file for DenyHosts is /etc/denyhosts.conf.
[ordinarﬂy, you would only need to make a small number of changes in the config file for its customization to
your needs. For example, when I used to use DenyHosts on my Linux laptop, I changed the ADMIN_EMAIL to
kak@localhost, uncommented the SMTP_FROM and SYNC_SERVER lines, set PURGE_DENY to 1w, BLOCK_SERVICE to
ALL, DENY_THRESHOLD_INVALID to 3, DENY_THRESHOLD_VALID to 5, SYNC_INTERVAL to lh, SYNC_UPLOAD to YES,
and SYNC_DOWNLOAD to YES.] DenyHostS makes 1ts 10g entries in the
/var/log/denyhosts file. You can also do “man denyhost s’ to
get more information on the tool. DenyHosts comes with a
synchronization feature that allows it to download the IP
addresses that have been blacklisted elsewhere. In that sense,
the tool has the ability to give you advance protection.

21

Computer and Network Security by Avi Kak

Lecture 2/

e In the same manner as Fail2Ban, DenyHosts can silently restore

access privileges of a blacklisted IP address after a certain

period of time whose duration is set in the configuration file.

The hOmepage for DGHYHOStS 1S http://denyhosts.sourceforge.net/.

e Shown below is a 45 second segment of the auth.log file after

DenyHosts was fired up. This represents an illegal attempt to

break into moonshine.ecn.purdue.edu from someone at
190.12.41.50. If you enter this IP address in the query window
Of http://wuw. ip2location.com, yOU Will discover that the intruder is

logged into a network owned by an outfit called PUNTONET in

the country of Ecuador.

tried to connect as root:

Apr 25 16:29:03 moonshine
Apr 25 16:29:03 moonshine
Apr 25 16:29:04 moonshine

tried to connect as apple:

Apr
Apr
Apr
Apr

25 16:29:08
25 16:29:08
25 16:29:08
25 16:29:10

moonshine
moonshine
moonshine
moonshine

sshd [31037] :
sshd[31037] :
sshd [31037] :

sshd [31039] :
sshd[31039] :
sshd [31039] :
sshd [31039] :

tried to connect as magazine:

Apr
Apr
Apr
Apr

25 16:29:13
25 16:29:13
25 16:29:13
25 16:29:15

moonshine
moonshine
moonshine
moonshine

sshd[31041] :
sshd [31041]:
sshd[31041] :
sshd[31041] :

tried to connect as sophia:

Apr
Apr
Apr
Apr

tried to connect as janet:

25 16:29:18
25 16:29:18
25 16:29:18
25 16:29:20

moonshine
moonshine
moonshine
moonshine

sshd [31043] :
sshd[31043] :
sshd [31043] :
sshd [31043] :

reverse mapping [190.12.41.50] failed - POSSIBLE
pam_unix(sshd:auth): authentication failure; logname=
Failed password for root from 190.12.41.50 port 54042

reverse mapping [190.12.41.50] failed - POSSIBLE
Invalid user apple from 190.12.41.50
pam_unix(sshd:auth): authentication failure; logname=

Failed password for invalid user apple from 190.12.41.

reverse mapping [190.12.41.50] failed - POSSIBLE
Invalid user magazine from 190.12.41.50

pam_unix(sshd:auth): authentication failure; logname=
Failed password for invalid user magazine from 190.12

reverse mapping [190.12.41.50] failed - POSSIBLE
Invalid user sophia from 190.12.41.50
pam_unix(sshd:auth): authentication failure; logname=

BREAK-IN ATTEMPT!
uid=0 euid=0 tty=ssh ruser=
ssh2

BREAK-IN ATTEMPT!

uid=0 euid=0 tty=ssh ruser=
50 port 54102 ssh2

BREAK-IN ATTEMPT!

uid=0 euid=0 tty=ssh ruser=

.41.50 port 54163 ssh2

BREAK-IN ATTEMPT!

uid=0 euid=0 tty=ssh ruser=

Failed password for invalid user sophia from 190.12.41.50 port 54227 ssh2

22

rh

rhq

rh

rhq

http://denyhosts.sourceforge.net/
http://www.ip2location.com

Computer and Network Security by Avi Kak

Lecture 2/

Apr
Apr
Apr
Apr

25
25
25
25

16:29:23
16:29:23
16:29:23
16:29:25

moonshine
moonshine
moonshine
moonshine

sshd[31045] :
sshd [31045] :
sshd[31045] :
sshd [31045] :

tried to connect as taylor:

Apr
Apr
Apr
Apr

25
25
25
25

16:29:28
16:29:28
16:29:28
16:29:30

moonshine
moonshine
moonshine
moonshine

sshd [31047] :
sshd[31047] :
sshd [31047] :
sshd [31047] :

tried to connect as vanessa:

Apr
Apr
Apr
Apr

25 16:29:33 moonshine
25 16:29:33 moonshine
25 16:29:33 moonshine
25 16:29:34 moonshine

sshd[31049] :
sshd [31049] :
sshd[31049] :
sshd[31049] :

tried to connect as alyson:

Apr 25 16:29:38 moonshine
Apr 25 16:29:38 moonshine
Apr 25 16:29:38 moonshine
Apr 25 16:29:39 moonshine

tried again to connect as

Apr 25 16:29:42 moonshine
Apr 25 16:29:42 moonshine
Apr 25 16:29:44 moonshine

tried again to connect as

Apr
Apr
Apr
Apr

Apr

25
25
25
25

25

16:29:48
16:29:48
16:29:48
16:29:50

16:29:50

moonshine
moonshine
moonshine
moonshine

sshd[31051] :
sshd [31051] :
sshd [31051] :
sshd[31051] :

root:

sshd [31053] :
sshd[31053] :
sshd[31053] :

research:

sshd [31055] :
sshd[31055] :
sshd[31055] :
sshd [31055] :

reverse mapping [190.12.41.50] failed - POSSIBLE
Invalid user janet from 190.12.41.50

pam_unix(sshd:auth): authentication failure; logname=
Failed password for invalid user janet from 190.12.41

reverse mapping [190.12.41.50] failed - POSSIBLE
Invalid user taylor from 190.12.41.50
pam_unix(sshd:auth): authentication failure; logname=

BREAK-IN ATTEMPT!

uid=0 euid=0 tty=ssh ruser= rh
.50 port 54289 ssh2

BREAK-IN ATTEMPT!

uid=0 euid=0 tty=ssh ruser= rh

Failed password for invalid user taylor from 190.12.41.50 port 54351 ssh2

reverse mapping [190.12.41.50] failed - POSSIBLE
Invalid user vanessa from 190.12.41.50
pam_unix(sshd:auth): authentication failure; logname=

BREAK-IN ATTEMPT!

uid=0 euid=0 tty=ssh ruser= rh

Failed password for invalid user vanessa from 190.12.41.50 port 54406 ssh2

reverse mapping [190.12.41.50] failed - POSSIBLE
Invalid user alyson from 190.12.41.50
pam_unix(sshd:auth): authentication failure; logname=

BREAK-IN ATTEMPT!

uid=0 euid=0 tty=ssh ruser= rh

Failed password for invalid user alyson from 190.12.41.50 port 54467 ssh2

reverse mapping [190.12.41.50] failed - POSSIBLE
pam_unix(sshd:auth): authentication failure; logname=
Failed password for root from 190.12.41.50 port 54509

reverse mapping [190.12.41.50] failed - POSSIBLE
Invalid user research from 190.12.41.50

pam_unix(sshd:auth): authentication failure; logname=
Failed password for invalid user research from 190.12

AND FINALLY CAUGHT BY DENYHOSTS:

moonshine sshd[31060]:

BREAK-IN ATTEMPT!
uid=0 euid=0 tty=ssh ruser= rh
ssh2

BREAK-IN ATTEMPT!

uid=0 euid=0 tty=ssh ruser= rh
.41.50 port 54581 ssh2

refused connect from ::ffff:190.12.41.50 (::ffff:190.12.41.50)

e From the segment of the log file shown above, you can see that

the intruder made 10 attempts before getting trapped by

DenyHosts. How many attempts an intruder is allowed to make

before any further connection requests are summarily refused

23

Com;

puter and Network Security by Avi Kak Lecture 24

depends on the choices you make in the
/etc/denyhosts.cont configuration file. [had the following setting
in the config file for the log file segment shown above:

DENY_THRESHOLD_INVALID
DENY_THRESHOLD_VALID

5
10

where the first number sets the limit on how many times an
intruder can try to gain entry with usernames that do NOT
exist in the /etc/passwd file and the second sets a similar
limit on trying to gain entry through usernames that actually
do exist. I subsequently changed the former to 3 and the latter
to 5.

Obviously, what values you choose for the two parameters
shown above and other similar parameters in the config file
depends on how much latitude you want to give the legitimate
users of your host with regarding to any accidental mis-entry of
user names and passwords.

What I show next is an attack by a cleverer intruder. What
this intruder is attempting is not your classic dictionary attack.
The intruder appears to know that he/she will be allowed only a
limited number of attempts (probably from a prior manual
attempt to break in with a number of different login names from
conceivably a different TP address). So the intruder is trying
only the login names that form the various substrings in the

24

Computer and Network Security by Avi Kak

Lecture 2/

domain name of “moonshine.ecn.purdue.edu”.

Note that the

intruder is making only 4 attempts for each login name, one less

than it takes to get disbarred by the config settings shown

previously. To see the source of the attack, enter the IP address

66.135.39.212 in the query window of http://www.ip2location. com and

you

will notice that this address belongs to a company called

Zartana based in Brazil. In its description at LinkedIn, this
company clarms to be able to deliver 2,000,000 email
messages per hour.

login tried:

May 5 10:11:
May 5 10:11:
May 5 10:11:
May 5 10:11:
May 5 10:11:

login tried:

May 5 10:11:
May 5 10:11:
May 5 10:11:
May 5 10:11:
May 5 10:11:

login tried:

May 5 10:11
May 5 10:11:
May 5 10:11:
May 5 10:11:
May 5 10:11:

login tried:

May 5 10:11:
May 5 10:11:
May 5 10:11:
May 5 10:11:
May 5 10:11

login tried:

May 5 10:11:
May 5 10:11:
May 5 10:11:

ecn (Attempt 1 as ecn)

23 moonshine sshd[27483]: reverse mapping checking getaddrinfo for server2.tusom.org [66.135.
23 moonshine sshd[27483]: Invalid user ecn from 66.135.39.212

23 moonshine sshd[27483]: pam_unix(sshd:auth): check pass; user unknown

23 moonshine sshd[27483]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0
25 moonshine sshd[27483]: Failed password for invalid user ecn from 66.135.39.212 port 33901

ecn (Attempt 2 as ecn)

25 moonshine sshd[27485]: reverse mapping checking getaddrinfo for server2.tusom.org [66.135.
25 moonshine sshd[27485]: Invalid user ecn from 66.135.39.212

25 moonshine sshd[27485]: pam_unix(sshd:auth): check pass; user unknown

25 moonshine sshd[27485]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0
28 moonshine sshd[27485]: Failed password for invalid user ecn from 66.135.39.212 port 34028

ecn (Attempt 3 as ecn)

:29 moonshine sshd[27487]: reverse mapping checking getaddrinfo for server2.tusom.org [66.135.

29 moonshine sshd[27487]: Invalid user ecn from 66.135.39.212

29 moonshine sshd[27487]: pam_unix(sshd:auth): check pass; user unknown

29 moonshine sshd[27487]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0
31 moonshine sshd[27487]: Failed password for invalid user ecn from 66.135.39.212 port 34163

ecn (Attempt 4 as ecn)

32 moonshine sshd[27489]: reverse mapping checking getaddrinfo for server2.tusom.org [66.135.
32 moonshine sshd[27489]: Invalid user ecn from 66.135.39.212

32 moonshine sshd[27489]: pam_unix(sshd:auth): check pass; user unknown

32 moonshine sshd[27489]: pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0

:34 moonshine sshd[27489]: Failed password for invalid user ecn from 66.135.39.212 port 34282

moonshine (Attempt 1 as moonshine)

35 moonshine sshd[27491]: reverse mapping checking getaddrinfo for server2.tusom.org [66.135.
35 moonshine sshd[27491]: Invalid user moonshine from 66.135.39.212
35 moonshine sshd[27491]: pam_unix(sshd:auth): check pass; user unknown

39.212]

tty=ssh

ssh2

39.212]

tty=ssh

ssh2

39.212]

tty=ssh

ssh2

39.212]

tty=ssh

ssh2

39.212]

25

failed - POSSIB

ruser= rhost=66

failed - POSSIB

ruser= rhost=66

failed - POSSIB

ruser= rhost=66

failed - POSSIB

ruser= rhost=66

failed - POSSIB

http://www.ip2location.com

Computer and Network Security by Avi Kak

Lecture 2/

May 5 10:11:35 moonshine sshd[27491]:
37 moonshine sshd[27491]:

May 5 10:11:

login tried:

May 5 10:11:
May 5 10:11:
May 5 10:11:
May 5 10:11:
May 5 10:11

login tried:
May 5 10:11
May 5 10:11
May 5 10:11
May 5 10:11
May 5 10:11

login tried:
May 5 10:11
May 5 10:11
May 5 10:11
May 5 10:11
May 5 10:11

login tried:

May 5 10:11
May 5 10:11
May 5 10:11
May 5 10:11
May 5 10:11

login tried:
May 5 10:11
May 5 10:11
May 5 10:11
May 5 10:11
May 5 10:11:

login tried:
May 5 10:11:
May 5 10:11:
May 5 10:11:
May 5 10:11:
May 5 10:11:

login tried:

May 5 10:11:
May 5 10:11:
May 5 10:11:
May 5 10:11:

140

141
141
141
141
143

143
143
143
143
146

149
149
149
149

moonshine

37 moonshine
37 moonshine
37 moonshine
37 moonshine
moonshine

moonshine

moonshine
moonshine
moonshine
moonshine
moonshine

moonshine

moonshine
moonshine
moonshine
moonshine
moonshine

purdue

:47 moonshine
147
147
147
149

moonshine
moonshine
moonshine
moonshine

purdue

moonshine
moonshine
moonshine
moonshine

52 moonshine

purdue

52
52
52
52
54

moonshine
moonshine
moonshine
moonshine
moonshine

purdue

55 moonshine
55 moonshine
55 moonshine
55 moonshine

(Attempt 2 as

sshd [27493] :
sshd [27493] :
sshd [27493] :
sshd [27493] :
sshd [27493] :

(Attempt 3 as

sshd [27495] :
sshd [27495] :
sshd [27495] :
sshd [27495] :
sshd [27495] :

(Attempt 4 as

sshd [27497] :
sshd [27497] :
sshd [27497] :
sshd [27497] :
sshd [27497] :

sshd [27499] :
sshd [27499] :
sshd [27499] :
sshd [27499] :
sshd [27499] :

sshd[27501] :
sshd[27501] :
sshd [27501] :
sshd[27501] :
sshd [27501] :

sshd [27503] :
sshd [27503] :
sshd [27503] :
sshd[27503] :
sshd [27503] :

sshd [27505] :
sshd [27505] :
sshd [27505] :
sshd [27505] :

pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0
Failed password for invalid user moonshine from 66.135.39.212 port

moonshine)

reverse mapping checking getaddrinfo for server2.tusom.org [66.135
Invalid user moonshine from 66.135.39.212

pam_unix(sshd:auth): check pass; user unknown

pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0
Failed password for invalid user moonshine from 66.135.39.212 port

moonshine)

reverse mapping checking getaddrinfo for server2.tusom.org [66.135.
Invalid user moonshine from 66.135.39.212

pam_unix(sshd:auth): check pass; user unknown

pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0
Failed password for invalid user moonshine from 66.135.39.212 port

moonshine)

reverse mapping checking getaddrinfo for server2.tusom.org [66.135.
Invalid user moonshine from 66.135.39.212

pam_unix(sshd:auth): check pass; user unknown

pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0
Failed password for invalid user moonshine from 66.135.39.212 port

(Attempt 1 as purdue)

reverse mapping checking getaddrinfo for server2.tusom.org [66.135.
Invalid user purdue from 66.135.39.212

pam_unix(sshd:auth): check pass; user unknown

pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0

tty=ssh ruser=
34384 ssh2

.39.212] failed

tty=ssh ruser=

34514 ssh2

39.212] failed

tty=ssh ruser=

34637 ssh2

39.212] failed

tty=ssh ruser=

34759 ssh2

39.212] failed

tty=ssh ruser=

Failed password for invalid user purdue from 66.135.39.212 port 34906 ssh2

(Attempt 2 as purdue)

reverse mapping checking getaddrinfo for server2.tusom.org [66.135.
Invalid user purdue from 66.135.39.212

pam_unix(sshd:auth): check pass; user unknown

pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0

39.212] failed

tty=ssh ruser=

Failed password for invalid user purdue from 66.135.39.212 port 35030 ssh2

(Attempt 3 as purdue)

reverse mapping checking getaddrinfo for server2.tusom.org [66.135.
Invalid user purdue from 66.135.39.212

pam_unix(sshd:auth): check pass; user unknown

pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0

39.212] failed

tty=ssh ruser=

Failed password for invalid user purdue from 66.135.39.212 port 35189 ssh2

(Attempt 4 as purdue)

reverse mapping checking getaddrinfo for server2.tusom.org [66.135.
Invalid user purdue from 66.135.39.212

pam_unix(sshd:auth): check pass; user unknown

pam_unix(sshd:auth): authentication failure; logname= uid=0 euid=0

39.212] failed

tty=ssh ruser=

26

rhost=66

- POSSIBI

rhost=66

- POSSIBI

rhost=66

- POSSIBI

rhost=66

- POSSIBI

rhost=66

- POSSIBI

rhost=66

- POSSIBI

rhost=66

- POSSIBI

rhost=66

Computer and Network Security by Avi Kak Lecture 24

May 5 10:11:58 moonshine sshd[27505]: Failed password for invalid user purdue from 66.135.39.212 port 35321 ssh2

FINALLY TRAPPED BY DENYHOSTS

27

omputer and Network Security by Avi Kak Lecture 24

Back to [LOC]

24.4 Cracking Passwords with Hash Chains
and Rainbow Tables

e As you have seen in the earlier sections of this lecture, a
dictionary attack means trying out one password at a time to
break into a machine. Password cracking, on the other hand,
means that you have already broken into a machine and
somehow gotten hold of the document where all the password
hashes are stored. (This document is usually referred to as the
System Password File.) Now you want to map the password
hashes back to the character strings that are the passwords as
entered by the users.

e You might ask that if a specific feature of a hashing function is
its one-way property — that it maps a string to a hash but you
are not supposed to be able to construct an inverse-map from
the hash to the string — how is password cracking possible at
all? Note that, strictly speaking, this one-way property applies
only to hash functions such as those that belong to the officially
sanctioned SHA family. In the past, the hash functions used for
password security have not always been the sort of hash
functions discussed in Lecture 15, as you will soon see in what
follows in this section.

28

Com;

puter and Network Security by Avi Kak Lecture 24

e The following two facts have given much impetus to the

development of password cracking methods during the last
twenty years: (1) The older versions of the Microsoft Windows
platform used an extremely weak method for hashing
passwords; and (2) The ubiquity of the Windows machines all
around the world.

The password hashing used in the older versions of the Windows
platform is known as the LM Hash where LM stands for LAN
Manager. This hashing function is so weak that a password can
be cracked — meaning that the ASCII string for the password
can be inferred from its hash value — in just a few seconds
through the rainbow table attack that I'll describe later in this
section. An open-source tool called Ophcrack, co-developed by
the inventor of the rainbow tables, can crack such a password
hash in about 13.6 seconds 99.9% of the time using a rainbow
table of size roughly 1 GB. [The developers of Opherack claim that they
can also crack the hashes generated by the NTLM Hash algorithm used in the more
recent Windows machines. Note that the most recent Microsoft applications have

moved on to NTLMv2 and Kerberos based protocols for user authentication.]

Since the LM Hash has served as such a magnet for the
development of password cracking algorithmes, it is educational
to review it. For the LM Hash algorithm, a password is limited
to a maximum of 14 ASCII characters and zero-padded to 14 if
shorter than that. Any lowercase characters in the password are
converted to uppercase. Subsequently, this 14-character string is

29

Com,

puter and Network Security by Avi Kak Lecture 24

divided into two 7-character substrings, with the 56 bits of each
substring used as a key to the DES algorithm to encrypt the
8-character plaintext string KGS!@#$%. Each half produces a
64-bit ciphertext and two ciphertext bit streams are simply
concatenated together to create a 128-bit pattern that is stored
as the password “hash” by the LM Hash algorithm. [in case you
are wondering about the plaintext KGS ! @#$7, its first three letters, KGS, are
believed to stand for “Key of Glen and Steve” and the next five characters are what

you get by pressing Shift 12345 on your keyboard.}

In addition to the cryptographic weakness inherent to DES,
there are several vulnerabilities that are specific to the LM Hash
algorithm itself. For one, it is easy to guess if the original
password string was shorter than 8 characters since in all such
cases the second half the input string is all zeros and it results
in the predictable DES encryption given by the hex
0xAAD3B435B51404EE. Another source of great weakness in LM
Hash is that the two halves of the hash value can be attacked
separately since there were calculated independently.
Additionally, ordinarily each character of the 14 character string
would be one of 95 printable characters. However, since LM
Hash converts lowercase to uppercase, that means that each
character can only be one of 69 values. Therefore, the total
number of distinct hash values for each 7-character part of the
password is 697 ~ 23 not a very large number for modern
desktops. [In general, if the size of the alphabet is k and you want to construct strings of length n

from the alphabet, the total number of distinct strings you’ll able to construct is k" — since you will have k

30

Computer and Network Security by Avi Kak Lecture 24

choices at each of the n positions in a string. In this collection of size k™, every string is of length n. Now
suppose we also accept strings of length n — 1, then you will get an additional k"~ strings, and so on. What
that implies is that the total number of password strings (of all possible printable ASCII characters) of length

7 or less is given by 697 4+ 69¢ + 69° + 69* + 69° + 692 + 69.}

As mentioned at the beginning of this section, password
cracking means that an adversary has somehow gotten hold of
the document where all the password hashes are stored and is
now trying to figure out the actual passwords from those
hashes. In a Linux machine, the root-readable-only document
where all the hashes are stored is /etc/shadow. [In a Windows
machine, the passwords, I believe, are stored in the
C:\Windows\System32\config\SAM document. This file, however, may not be
directly readable while your machine is up and running. There is an Offline N'T
Password Tool available at http://pogostick.net/~pnh/ntpasswd/| that, ordinarily
meant for resetting your password on a Windows machine, can also be used to read

the SAM file where the password hashes are stored.]

That brings us to the question of how to actually reverse-map
a password hash to the actual password entered by a user.
Now that disk storage is so cheap, a straightforward answer to
this question is to construct a hash for all possible character
combinations and to then store these <password, hash> values
(in the form of <hash, password> pairs) in a giant disk-based
hash-table database of the sort that are now made available by
all major COHlpU.tiIlg 1anguages. [In Linux/Unix platforms, such

disk-based hash tables are accessed through what are known as DBM libraries. The

31

http://pogostick.net/~pnh/ntpasswd/

Computer and Network Security by Avi Kak Lecture 24

Perl module DB_File and the Python module bsddb provide very convenient
interfaces to this type of disk storage. See Chapter 16 of my book Scripting with
Objects for further information on how to use such disk-based storage.] Let’s
say you want to construct this type of a lookup table for
attacking the LM Hash password file. As mentioned earlier, you
are likely to attack each of the two halves of the password hash
separately and, for each half, you have 697 ~ 2% different
possible strings to search through. Since 2*3 is roughly 9 x 10?2
(which, colloquially speaking, is nine trilion) aNd, assuming for the sake of a
simple argument that we can store the inverse mapping from
the password hash values to the passwords in the form of a
hashtable with no collisions, we would only need to store the
seven bytes for each ASCII string. At runtime, when we seek
the password P associated with a password hash C, the
hashtable access function would convert C' into the memory
address where P is stored. [mformation in hashtables is stored in buckets. Tdeally, cach
bucket would hold a single <key,value> pair, where the key would be the hash of a password and the value
the password itself. For a disk-based hash table for LM password cracking, each key C' would require 8 bytes
and each P 7 bytes. Therefore, each <key,value> pair would require a total of 15 bytes. This implies the
hash table would require 15 x 9 x 10'2 bytes of storage — that is 135 terabytes of disk storage. Considering
that RAID array storage is now under $50/terabyte at some of the vendors, creating a full lookup table for

attacking the LM Hash passwords is not that out of the question any longer.]

e If the size of the disk space mentioned above seems large, you
can reduce the space needed considerably if you assume that
random juxtapositions of the characters are unlikely to exist in
a password. You can construct lookup tables whose sizes are
only a few gigabytes by just using concatenations of meaningful

32

Com,

puter and Network Security by Avi Kak Lecture 24

word fragments. If the passwords are short enough, such lookup
tables can be deadly effective in instantly revealing a user’s
password string.

When a password hash is attacked by looking up a table of
previously computed hashes, we refer to that as the
lookup-table attack (in order to distinguish it from the rainbow
table attack I'll address next). Note that an adversary may not
even have to compute the hashes for a lookup-table attack. You
can acquire such lookup tables either for direct download or on
physical media from various vendors on the internet. Ostensibly,
this is legitimate business as it allows network administrators to
test the strength of the user passwords. But, obviously, nothing
prevents bad guys from using these tables to crack password

hashes.

If you still believe that the disk storage needed for a lookup
table attack is much too large for the sort of password hashes
you want to attack, or if your goal is to attack (or, say, to
attempt attacking) longer passwords, you are going to need the
rainbow tables.

The idea of rainbow tables was invented by Phillipe Oecshlin
and is described in his paper “Making a Faster Cryptanalytic
Time-Memory Trade-Off” that appeared in Lecture Notes in
Computer Science in 2003.

33

Com,

puter and Network Security by Avi Kak Lecture 24

e In order to understand how a rainbow table is constructed, you

have to first understand what is meant by a hash chain and how
such chains allow you to trade time for memory. That is, in
comparison with the memory required for constructing a hash
for every possible password (and then using it subsequently as a
lookup table to determine the password that goes with a hash),
hash chains requires reduced memory but at the cost of having
to spend more time to get to the password (most of the time).

Fundamental to the notion of a hash chain is a reduction
function. A reduction function maps a hash to a character
string that looks like a password. There is nothing
extraordinary about a reduction function. You could, for
example, take the last few bytes of the hash and create any sort
of a mapping from those bytes into the space of all possible
passwords. Any mapping that more or less uniformly samples
the space of all possible passwords is a good enough mapping.
We can certainly expect that a reduction function may map
more than one hash to the same password. As it turns out, it is

a good thing when a reduction function does that.

Let p be the plaintext password and c be its hash. Let the hash
function that takes us from p to ¢ be denoted H(.). So we have
c = H(p). Let’s now envision a reduction function R(.) that
when applied to c yields a string that looks like a plaintext. Let
p’ be the plaintext that results from applying the reduction
function to ¢. So we can write p’ = R(c).

34

Com,

puter and Network Security by Avi Kak Lecture 24

e Given the pair of functions H() and R() as defined above,

starting from some randomly chosen plaintext p; from the space
of all passwords, we can now construct a hash chain in the
following manner:

p1 — ci=H(p1) — pa=R(c1) — co=H (p2) — p3=R(ca) — c3=H(p3) — pa=R(c3) — ---

We will specify the length of the chain by the parameter k.
Each link in this chain would consist of one application of the
hash function H() and one application of the reduction function
R(). We store in a table just the starting plaintext p; and the
ending plaintext py.

starting point endpoint
plaintext also plaintext
after k steps of R(H (pk))

p P
p? s
P} g

Let’s say that a password cracker wants to use the above table
to crack a given hash C'. The cracker creates a chain — let’s
refer to as the test hash chain — by first applying R() to C' get
q1 = R(C), and then applying H() to ¢, to get dy = H(qy), and
so on. The test chain will now look like:

@1=R(C) — di=H(q1) — q2=R(d1) — d2=H(q2) — qz=R(d2) — - --

If any of plaintext passwords in this chain — meaning if any of
q1, o, - - - — match any of the endpoints in the second column

35

Com,

puter and Network Security by Avi Kak Lecture 24

of the table shown above, then there is a high probability that
the password that the cracker is looking for is in the chain
corresponding to that row.

In other words, if the plaintext string ¢,, for some value of m in
the test hash chain generated from the hash C' matches, say, the
endpoint entry pi in the second column of the table, the cracker
can expect with a high probability that the password associated
with C' is in the chain that corresponds to the i row of the
table. The starting point in this row is given by p%. The cracker
will now regenerate the chain for the " row of the table. The
regenerated chain will look like:

Py — A=H(p}) — py = R(c}) — ch=H(ph) —> -+ — ¢, _1=H(pi._,) — pi=R(ci._,)

With a significant probability, the cracker will find that his hash
C' matches one of the hashes in this chain. [Note that the hash ¢
that the cracker wants to crack can be anywhere in the chain.] Once a match
is found, the password that the cracker is looking for is the
plaintext that immediately precedes C' in the chain.

That leads to the question of how long to grow the test chain
starting with C' as we look for plaintext matches with the
endpoints in the table. The answer is that if the test hash chain
was grown through k steps, which is the same number of steps
used in the hash chain table, and if no plaintext matched with
any of the endpoints, then the password that the cracker is
looking for does NOT exist in any of the chains stored in the
table.

36

Com,

puter and Network Security by Avi Kak Lecture 24

e Additionally, let’s say that as we grow the test hash chain one

step at a time starting with the hash C' to be cracked, we run
into a g, that matches one of the endpoints in our table, but we
are unable to find C in the chain for that row. In such an event,
we continue to grow the test chain and look for another ¢, that
matches one the endpoints in the table. But, obviously, we do
NOT grow the test hash chain beyond the £ steps.

When we run into a ¢, that matches one of the endpoints in
the table but when the chain for that row does not contain the
hash C we are trying to crack, we refer to that as a false alarm.

Ideally, the hash chain table should have the property that the
passwords stored implicitly in all the chains should span (to the
maximum extent possible) the space of all possible passwords.
This is for the obvious reason that if a legitimate password is
neither a starting point, nor an endpoint, and nor in the interior
of any of the chains, then there would be no way to get to this
password from its hash. Said another way, if a password is NOT
reduced to during the construction of the hash chain table, then
that password cannot be inferred from its hash.

Whether or not the requirement mentioned above can be met in
practice depends much on the reduction function R(). Note
that any choice for R() will map multiple hashes to the same
password string. So it is possible for two chains to contain the
same password string. Say Chain 1 contains a specific password

37

Com,

puter and Network Security by Avi Kak Lecture 24

at step ¢ and Chain 2 has the same password at step 5 with

1 # 7. Now the two chains will traverse the same transitions
even though their endpoints will be different. The endpoints
will be different because the number of remaining steps in the
two chains in the two chains is not the same. Because the
endpoints will be different, Chain 1 and Chain 2 will occupy two
different rows in the table even though the passwords stored
implicitly in the two chains show significant overlap. When two
different chains in a table overlap in this manner, we refer to
that as a collision. This overlap cannot be detected because we
only store the starting points and the endpoints for the chains.
Nonetheless, such implicit overlaps can significantly reduce the
ability of a hash chain table to crack a hash because of the
reduced overall sampling of the space of all the passwords.

It is this overlap between the hash chains — also referred to as
the merging of the chains — that places an upperbound on the
size of a hash chain table. Ordinarily, you would want to
construct a hash chain table for a large number of randomly
selected starting points in the space of all passwords. But, as
the size of the table grows, the table becomes more and more
inefficient on account of chain merging. Before the invention of
rainbow tables, this problem was taken care of by constructing a
number of hash chain tables, each with a different reduction
function R().

e With rainbow tables, instead of constructing a number of hash

38

Co:

mputer and Network Security by Avi Kak Lecture 24

chain tables with different reduction functions to overcome the
problem of chain merging, you now construct a single hash
chain table, but now you use k different reduction functions,
{R1(), Ro(), - -, Ri()}, for each of the k steps in the
construction of a chain. For a collision to now occur, the
password that is reduced to must be the output of the same
reduction function — an event with much lower probability
than was the case with hash-chain tables as presented above.
This also takes care of one more problem with the old-style
hash-chain tables. You see, in hash-chain tables as explained
above, there is always a possibility that you will encounter a
loop as you grow a chain. Since a reduction function is
intentionally many-to-one, there is always a chance that the
password that is reduced to will be the same at two different
places in a chain. [Obviously, this can also happen in a test hash

chain.] As with chain collisions, such loops reduce the efficiency
of a hash chain table. However, when you use different
reduction functions for the successive reduction steps in a chain,
you are less likely to run into loops.

Using k different reduction functions in growing a hash chain
calls for a change in the lookup procedure. By lookup we mean
querying the hash chain table with the hash C' that you want to
crack. The lookup consists of first applying the last of the
reduction functions Ry() to obtain, say, ¢ = Ry(C') and then
checking whether ¢; is an endpoint in the rainbow table. If not,
we grow the test chain by calculating ¢o = Ry_1(H(q1)) and

39

Computer and Network Security by Avi Kak Lecture 24

search for ¢» as an endpoint in the table. If a matching endpoint
cannot be found for ¢o, we grow the test chain by one more step
by calculating g3 = Ry—2(H(q2)); and so on.

e There are several websites that provide pre-computed rainbow
tables for different hash functions. When the hashing function is
MD5 and for password strings that go up to 8 characters, you
can obtain the pre-computed rainbow tables from

http://www.freerainbowtables.com/en/tables2/

And here is a website devoted to GPU accelerated
implementation of rainbow table attacks:

http://project-rainbowcrack.com/

40

http://www.freerainbowtables.com/en/tables2/
http://project-rainbowcrack.com/

omputer and Network Security by Avi Kak Lecture 24

Back to [TOC]

24.5 Password Hashing Schemes

e Now that you know about password cracking, the very first
thing you need to become aware of is the fact that there do not
yet exist any tools for cracking passwords that are hashed with
state-of-the-art password hashing schemes that use variable
“salts” and variable “rounds”. As to what is meant by “salt”
and “round” will become clear from the presentation in this
section. An example of such a state-of-the-art password hashing
scheme is sha512_crypt. I'll have more to say about this scheme
later in this section.

e Before launching into how modern password hashing schemes
work, I do want to mention the wrong impression created by the
following sort of statements one often runs into: “Passwords
are stored as hash values,” “Hash values for passwords that
are not sufficiently long,” etc. Taken at their face value, such
statements seem to imply that when a user provides a password,
it is straightforwardly supplied to a hashing function, such as
those described in Lecture 15, and the result stored somewhere
in the system. This may have been true for some of the older
methods for creating password hashes, nothing could be farther
from the truth for the state-of-the-art schemes for converting
user-entered passwords into their hashes.

41

Computer and Network Security by Avi Kak Lecture 24

e The main reason why you cannot just directly apply an
algorithm such as SHA-512 to a user-entered password string is
because the resulting hash values would still be crackable
despite the fact that hash function itself is cryptographically
secure and possesses the one-way property defined in Lecture
15. [To explain this issue, let’s say there are no constraints placed on the lengths of
the passwords chosen by the users. Assume for the sake of argument that the
passwords used by some folks have only six characters in them and they all consist of
lowercase letters. Total number of such passwords that can be composed with exactly
six characters is only 26° = 308915776. Given a hash of such a password, even when
that hash is produced by, say, the cryptographically secure SHA-512 algorithm, it
would be trivial to construct a lookup table for all such hashes and acquire the
password in less time than it takes to blink an eye. Now imagine an intruder who has
no desire to crack all the passwords in, say, the /etc/shadow file maintained by the
network administrator. All that the intruder wants is to break into just a couple of
accounts where he/she can install his own software. For such an intruder, just being

able to crack short passwords is good Cnough.]

e To make it virtually impossible to carry out the sort of attack
described in red above, all modern password hashing schemes
combine with the user-chosen password string a number of
random bits that are known as the salt. Before I explain what
salt is and why it makes it virtually impossible to crack a
password — even the short ones — let’s look at how the hash
value of a password is actually stored in /etc/shadow: [If you
execute ‘man shadow’, you will realize that each line in the file /etc/shadow consists

of 9 colon-separated field. The first field is always the username; the second field is the

42

Com,

puter and Network Security by Avi Kak Lecture 24

password hash that is shown below; the third field the date of last password change;
the fourth field the number of days the user must wait before he/she is allowed to
change the password; the fifth the number of days after which the user will be forced
to change the password; and so on. Shown below is what is stored in the second field

— the password hash field — for some user.

6rounds=40000$ZVzZ72hf $Tf19cHUKOg . nf . I/Bpn5jd3jokKMEAIHssRW20EUGEfneuTUzkhNmGv9iDhjfeDpJtqOyGjtSeXSq8

What is shown above, although nominally referred to as a
password hash, is in actuality the MCF (Modular Crypt
Format) representation of a password hash. With MCF, a
password hash looks either like

$<identifier>$rounds=<number-of-rounds>$<salt>$<password-hash>

or, when the “number of rounds” is set to its default value 5000,
like

$<identifier>$<salt>$<password-hash>

Therefore, in the example shown above, what is stored for the
password hash in /etc/shadow for a user consists of:

identifier: 6

number of rounds: 40000

salt: ZVzZ72hf

actual hash value: T£19cHUKOg.nf . I/Bpn5jd3jokKMEATHs sSRW20EUGE neuTUzkhNmGv9iDhjfeDpJtqOyGjtSeXSq8

The “identifier” shown above refers to the Password Hashing
Scheme. Note that there is more to a password hashing scheme
than just a hashing algorithm. Of course, as you would guess,
all modern password hashing schemes use a hashing algorithm
and it is commonly the case that the name of a password

43

Com,

puter and Network Security by Avi Kak Lecture 24

hashing scheme includes a mnemonic for the hash algorithm
used by scheme. Also, the name of a password hashing scheme
typically ends in the substring “crypt,” as illustrated by the
table shown below that shows the identifiers used for today’s
more important password hashing schemes:

| Password Hashing Scheme | Identifier |
md5_crypt 1
berypt 2
berypt 2a
berypt 2x
berypt 2y
bsd_nthash 3
sha256_crypt D
shab12_crypt 6
sun_mdb_crypt md5
shal_crypt shal

Note again that, except for bsd_nthash, the names of all the
Password Hashing Schemes mentioned above end in the
substring “Crypt” . [The berypt password hashing scheme is used in
Unix/Solaris systems. The underlying hashing algorithm in bcrypt is based on the
Blowfish cipher I mentioned in Section 3.2 of Lecture 3 as a variant of DES. The
password hash output by bcrypt omits the separator character ‘$’.} The table 1
have shown above is reproduced from
http://packages.python.org/passlib/modular_crypt_format.html|. AS mentioned there,
MCEF is not an official standard, but a commonly used format
today for storing password hashes.

e Getting back to the /etc/shadow entry for a password shown on

page 42, you can now tell that the password hash shown at the

44

http://packages.python.org/passlib/modular_crypt_format.html

Com,

puter and Network Security by Avi Kak Lecture 24

bottom of that page was generated by the sha512_crypt
password hashing scheme.

Let’s now examine the second field of the /etc/shadow entry for
the password hash shown earlier in this section. This entry says:
rounds=40000. As you will soon see, modern password hashing
schemes hash a password (along with its salt — whose meaning
will soon be explained) multiple times. You might ask: To what
purpose? You are even more likely to raise this question after
you realize that an intruder who has stolen the /etc/shadow or
an equivalent file can see the number of rounds applied by the
password hashing scheme. So, in order to crack a password
hash, the intruder could use the same number of rounds. Note
that the intruder already has access to the password hashing
scheme used since they are all in the public domain. For the
answer to this very reasonable question, read on.

By hashing a multiple number of times, you make it that much
harder to crack a password through any sort of a table lookup,
rainbow or otherwise, especially if the number of rounds is
randomly chosen for each user account. Even though some
state-of-the-art password hashing schemes can generate a
password hash with any number of rounds, most password
hashes are computed with a default value for the number of
rounds — 5000. The reason for that is that the protection
provided by salts is considered to be strong enough to thwart
any lookup-table based attacks for several more years to come.

45

Com,

puter and Network Security by Avi Kak Lecture 24

But should computers become even more powerful and should
massive disk storage become even more inexpensive, the
additional protection made possible a variable number of rounds
would certainly be put to greater use. [There is also a minimum
and a maximum on the number of rounds. The minimum is
1000 and maximum is 999,999,999. Specifying a value below
1000 would cause 1000 to be used for the number of rounds and
specifying a value of 1 billion or greater would cause 999,999,999
to be used for the number of rounds.]

That takes us to the third part of what is stored for a password
hash in its MCF representation in the second field of a file like
/etc/shadow — the salt. A salt is simply a randomly chosen bit
pattern that is combined with the actual password before it is
hashed by a hashing algorithm. The salt used in the
/etc/shadow entry shown earlier is Zvzz72nf. These are eight
Base64 characters, each standing for six bits. Therefore, this
salt consists of a 48-bit word that will be combined with the
user’s password before hashing.

Assume that my password is as simple as, say, the ASCII string
“avikak”. This password consists of only 6 characters. Assuming
these to be ASCII characters and using 8-bit encoding for each
character from the ASCII table (despite the fact that the MSB
for all the printable characters in the ASCII table is 0), my
actual password consists of a bit stream that contains 48 bits.
Using the same salt as shown above, I may prepend the 48 bits

46

Com;

puter and Network Security by Avi Kak Lecture 24

of the salt to the 48 bits of the password “avikak” to form a 96
bit input to the hashing function. In actual practice, a password
hashing scheme is likely to create a repetitive concatenation of
the salt bits and the password bits to form a bit pattern that is
hashed. The precise nature of this concatenation and repetition
depends on the password hashing scheme used.

[f, as a system admin, I use a different salt for each different
username, it would be impossible for an adversary to use a
precomputed table of any sort for inferring the passwords from
their hash values. Obviously, the intruder who stole the
/etc/shadow file knows the salt used for each username.
Nonetheless, he/she would not be able to use precomputed
rainbow tables available on the web for cracking the passwords.
And it would simply take much too long (possibly years) for the
intruder to create his/her own rainbow tables that accounts for
every possible value of the salt.

In general, if you use an n-bit salt, the size of storage needed for
password cracking through table lookup goes up by 2". So a
48-bit salt results in the size of this storage for mounting a
lookup type attack going up by a factor 2**. Typically, up to 16
Base64 characters are used for salt — that makes for a
maximum of 96 bits of salt — with the result 2% variability in
the hash value of a given password string.

® Note that a side benefit of using a random value for salt is

47

Computer and Network Security by Avi Kak Lecture 24

that it makes less likely that any two usernames will have the
same password hash associated with them. In any enterprise
level system, there is always a chance that multiple people will
use the same mnemonic string as a password. So without salt,
one could end up with a number of people with exactly the
same password hash for a set of different usernames. Imagine
what a bonanza that would be for an intruder who wants to
take over as many user accounts as possible with minimal work.

e The password hash shown earlier is in the Base64 representation
for the bit patterns for both the salt and for the actual hash. It
is important to keep in mind, however, that the Base64
representations as used in a password hash may NOT
correspond to the MIME-compatible Base64 encoding you have
seen in these lecture notes so far. In the Base64 encoding used
in password hashes, all you are guaranteed is that the encoding
is being carried out by converting 6-bit binary strings into
printable ASCII characters, but that the mapping used in this
conversation may differ from one password hashing scheme to
another. [The Python library passlib provides the MIME-standard Base64
encoding through passlib.utils.BASE64_CHARS. For Base64 encodings as used in
shab12_crypt, sha256_crypt, md5_crypt, the same library provides the encoding
through passlib.utils.HASH64 CHARS, etc.] The Base64 encodings as
used by password hashing schemes are also known as Hash64

encodings.

e Now that you know about the purpose of salts and rounds in

48

Computer and Network Security by Avi Kak Lecture 24

password hashing schemes, it’s time to become familiar with the
logic of an actual password hashing scheme. Your goal should
be to understand how a hashing algorithm is used in a password
hashing scheme. Toward that end, I recommend that you read
the specification document for the shas512_crypt password
hashing scheme: “Unix crypt using SHA-256 and SHA-512" by
Ulrich Drepper that is available at
http://www.akkadia.org/drepper/SHA-crypt.txt.

e The sha512_crypt password hashing scheme is a SHA-512 based
culmination of a series of password hashing schemes that owe
their origin to old Unix crypt) function. [Just for historical
interest, do “man crypt” on your Linux machine to find out more about
the now ancient crypt() function. It creates a password hash by encrypting
a constant string of all zeros with the DES algorithm with the key being
the user-supplied password. The 56-bit DES key is constructed by taking
the lowest 7 bits of the first 8 characters of the password entered by the
user. For obvious reasons, crypt() is not considered secure any more.] It
is interesting to contrast how password hashing used to be
carried out in the old crypt) function with how it is carried out
in sha512_crypt. To give the reader just a flavor of what is done
to the user supplied password string for the computation of its
hash, a scheme such as sha512_crypt first creates multiple
replications of a concatenation of the user-supplied password
string, the salt, followed again by the password string, the
number of such concatenations used being the number 64-byte
blocks in the original password string (with provision for the

49

http://www.akkadia.org/drepper/SHA-crypt.txt

Computer and Network Security by Avi Kak Lecture 24

password length modulo 64).

e Python’s library for a large number of password hashing
schemes is called pass1ib. It can both create password hashes
and verify a user-entered password. This is the library you
would want to use if you wanted to create a multi-user
application with a Python frontend for password based security.
The following URLs are useful for accessing passiib’s API and
other documentation:

http://pythonhosted.org/passlib/password_hash_api.html

http://packages.python.org/passlib/contents.html

e The names of all password hashing schemes in passlib end in
the suffix “_crypt”. And all such schemes define the following
two methods

encrypt ()

verify()
the first for generating a password hash and the second for
verifying a user-entered password against its hash in the
memory. For example, suppose my password was “avikak”
(which, by the way, it is not; so don’t get any ideas about
breaking into my machine). If T call

hash = passlib.hash.shab12_crypt.encrypt("avikak")
print hash

I'll get the following output for the password hash:

6rounds=40000$zJ1zd4B0OmLiJCrRA$t96c5xt7cwlXxw7xr3d81tpHp3s jH. kCIxn2EcHyizt791qtSJyL3cI3bi/ j1LeY6VrZMt0.zDzZiN6eohX/J1

50

http://pythonhosted.org/passlib/password_hash_api.html
http://packages.python.org/passlib/contents.html

Computer and Network Security by Avi Kak Lecture 24

As you can see, passlib uses a default of 40,000 rounds and 16
Base64 characters for the salt. On the other hand, if I want to
set the number of rounds to the more universal default of 5000,
[can call

hash = passlib.hash.shab12_crypt.encrypt(‘‘avikak’’, rounds=5000)
print hash

I get the following for the password hash:

6ABd0TbzfFDtm3gde$ePE12B18AFVXP . OH5gPyCT0eXGwX0 . zxf1R/9U05dQ27 ILAbHMiX0EjVLcB3Rio/8wI7mBIVE0Ko7ZJKYbILWO
Note that this password hash does not explicitly mention the

number of rounds because the number 5000 is universally

acknowledged to be the default value for this parameter. Here

are some additional examples of calls to the passiib library for

creating password hashes:

print passlib.hash.shab12_crypt.encrypt(‘‘avikak’’, rounds=5000, salt_size=8)
print passlib.hash.shab12_crypt.encrypt(‘‘avikak’’, rounds=5000, salt="ZVzZ72hf")

print passlib.hash.shab12_crypt.encrypt(‘‘avikak’’, rounds=40000, salt="ZVzZ72hf")

o1

Computer and Network Security by Avi Kak Lecture 24

Back to [TOC]

24.6 Federated Identity Management

e User authentication is becoming increasingly distributed. It is
now common for websites to grant you access to some or all of
their resources based on your login credentials at Twitter,
Facebook, Google, etc.

e Let’s say you have a small business that provides some sort of a
service to the paying customers. When the customers log in and
supply their identity credentials, how should you authenticate
them? In the old days, your only option was to run your own
password manager. However, there can be significant costs
associated with that. Perhaps the biggest issue related to
running your authentication server is the security of the user ID
data in the server. You can easily imagine the consequences of
someone breaking into your system and stealing the user 1D
data — it could ruin your business. [There is another issue here that is also
important: If every organization did its own authentication of the user credentials, just imagine how many
different username/password combinations a user would need to keep track of. In general, an informed user

would not want all his/her usernames and passwords at the different sites to be the same for security reasons.]

e But now there is an alternative: As a small-business owner, you
can use an Identity Provider (IDP) to authenticate the users
when they log in. You have surely been to websites where you

52

Computer and Network Security by Avi Kak Lecture 24

can log in with your Google or Facebook or Twitter credentials.
Those website are using these popular social media as Identity
Providers. An IDP typically has a special website for the benefit
of small businesses that shows how their identity verification
services can be used.

e So if user authentication is to be entrusted to a third party;,
what should be the rules of interaction between the three
parties involved: (1) the user; (2) the service provider; and (3)
the identity provider?

e The following three frameworks/protocols provide answers to
the question posed above:

OAuth : Focusing on the version 2.0 of OAuth, it is an authorization
framework that specifies how a server or a website in the internet
can accept a user’s login credentials on behalf of another server or
website. For example, assuming that the website for a restaurant
has a password protected page for some of its more private services,
it may ask you to login with your Twitter credentials by clicking on
a button. As explained later in this section, clicking on that button
causes the user’s browser to be redirected to Twitter’s login page
where you would be asked to enter your ID credentials. The identity
credentials you enter in that page would go directly to a Twitter
server for their authentication. And, after they are authenticated,
the Twitter server would issue an “authorization ticket” to the
restaurant web server for accepting you as a verified customer. All
these communications would be governed by the OAuth 2.0
framework. An important aspect of this scenario is that the identity

53

Computer and Network Security by Avi Kak Lecture 24

provider (in this case, Twitter) does not have to share the user login
credentials with the service provider (the restaurant). The OAuth
2.0 standard is described in the document RFC 6749.

OpenlD : Whereas the OAuth framework deals primarily with the
interaction between two web entities for the purpose of one entity
supplying login credentials based authorization to the other for
accepting a user, the processing and the verification of the identity
credentials supplied by a user and how some of that information
would be sent back to the service provider would typically be
handled by the OpenlD protocol.

SAML : SAML (Security Assertion Markup Language) is the oldest of
the three frameworks/protocols listed here. It is used by large
enterprises to implementation SSO (Single Sign-On) that allows for
a single log-in by a user at a given site to access the other sites and
services run by the enterprise.

e In what follows, I'll start with an example of how Twitter uses
the OAuth framework to allow its identity servers to be used by
other service providers for user authentication. This example is
from Twitter’s webpage at

https://developer.twitter.com/en/docs/basics/authentication/guides/log-in-with-twitter

e As shown in the figure that follows, there are three steps
involved in how Twitter allows a service provider to use its
identity verification server. The first step takes place when you
as a user clicks on the login button at the webpage of the service
provider (let’s say it’s a restaurant). That click by you sends an

54

https://developer.twitter.com/en/docs/basics/authentication/guides/log-in-with-twitter

Computer and Network Security by Avi Kak Lecture 2/

OAuth request_token to the Twitter server. After Twitter
verifies that the request is from a business that it has agreed to
provide identity services for, it sends back to the restaurant’s
web server the 200-OK status code (which implies success
followed by content creation by the sending party in the HTTP
protocol), an outh_token along with an outh_token_secret
using the SSL/TLS protocol for confidentiality.

e Step 2 is initiated with the user’s browser receiving a URL
redirect, which corresponds to the browser receiving the HT'TP
status code “302 Found”. As shown in the Step 2 figure, this
takes the user to a Twitter login page for entering the identity
credentials. If successfully verified, the user’s browser receives a
second URL redirect to the login verification page. And that
concludes Step 2.

oanrth_fohen

Redirect user 1
Upgrade request o Twitter generates |8
: token b accesstoken M
2 fourd i

GET /myirst-url

Parse acoass token,

User vigits

il o« GET Joaull athatlicaliesescoc oo b
adhentiatzpage [

= -
FEITTM BT LY Tuiter generales e
oken caclh ol request oden beris P ———
: Ul L wayin_toker

Hoken secrat, user
info, the redirect the
user

ret

auth-verfier i
i} 302 found
GET Imy-secand-rl ¢

cauth fokan ;
oathorrtsr -

J
S
Parse recussttoken [T 11 (o % .
oauth foken User sges.
cauth token secret it sigedinll
oauth callback_confirmed

Step 1 Step 2 Step 3

e Subsequently, in Step 3, after the login credentials supplied by

95

Com,

puter and Network Security by Avi Kak Lecture 24

the user are authenticated, the user’s browser receives one final
browser redirect that takes the user to the restaurant’s
access-controlled webpage that the user wanted to visit in the
first place. But the success of that redirection is subject to the
service provider (the restaurant’s web server) receiving an access
token shown in the figure for Step 3. The access token received
from Twitter also contains information regarding the user
(name, location, etc.) for the benefit of the service provider as
shown in the Step 3 figure.

As explained above, OAuth is about a designated 3rd party
e-commerce server (like Twitter) authorizing the service
provider (like a restaurant) to accept the user as a legitimate
client. That’s why OAuth is referred to as an Authorization
Framework. OAuth is more about the interaction between the
identity provider’s server and the service provider’s website than
about the identity verification itself. That takes us to the
second of the three frameworks/protocols mentioned previously
in this section about federated identity management — the
OpenlD protocol. Version 2 of OAuth uses OpenID as the user
authentication layer in the form of “OpenlD Connect (OIDC)”.
You can think of OIDC as a specific implementation of OpenlD
that provides an ID_token to encode the user’s identity which is

subsequently delivered to the service provider. More generally,
though, OIDC is considered to be a “profile” of OpenlD.

e That brings us to the third of the federated identity

56

Computer and Network Security by Avi Kak Lecture 24

management protocols mentioned previously: SAML. This is
the oldest of the three frameworks/protocols and was meant to
do together what OAuth and OpenlD do separately. While
mobile applications that require user authentication to be
carried out by a 3rd party server have generally switched over to
OAuth and OpenlD, larger enterprises are continuing to use
SAML for what’s known as SSO (Single Sign-On) that requires
a user to log in only once for the different e-services within the
enterprise. Specific to SAML is the use of what the protocol
refers to as an “assertion” that is a digitally signed XML
document whose different tags stand for the issuer that
authenticated the identity, attributes related to the user who
was authenticated, etc.

e Before ending this section, I want to say a few words about a
potential security vulnerability in OAuth. Imagine a rogue
business masquerading as a restaurant that wants to steal user
login credentials. Now recall the URL redirects I mentioned in
my explanation of OAuth using the Twitter example.
Remember, when you clicked on the login button on the
restaurant’s webpage, that was supposed to take your browser
to a Twitter log-in page through a URL redirect received from
Twitter. Now imagine the situation in which the restaurant’s
web server traps the outgoing call when you click on that
button and redirects your browser to a log-in page that looks
deceptively like the real Twitter login page. You can easily
imagine the rest of such a security exploit.

o7

omputer and Network Security by Avi Kak Lecture 24

Back to [TOC]

24.7 HOMEWORK PROBLEMS

1. As you now know, Fail2Ban protects your computer by updating
the iptables based firewall rules. In Section 24.3, when I showed
an example of these rules, it was based on the assumption that
initially all the chains in at least the filter table of the firewall
were empty. [also did not show an example of the rules after an
[P address is banned. Install Fail2Ban in your computer and
construct a demonstration that illustrates the modification to
the firewall rules after one or more IP addresses are banned.

2. As mentioned in Section 24.3, by default the Fail2Ban tool
monitors only the /var/log/auth.log file for repeated attempts
at breaking into a computer through the SSH port 22. It can,
however, be made to monitor any of the other log files such as
/var/log/apache/access.log for access to your HT'TPD server,
/var/log/mysqld.log for access to your database server mysqld,
/var/log/squid/access.log for access to your Squid proxy
server, /var/log/named/security.log for access to your bind9
based DNS sever, etc. In order to appreciate the full versatility
of Fail2Ban, create your own server application — based on,
say, the server scripts you have seen elsewhere in these lecture
notes. Make sure that your server application has associated
with it an access log in which the server makes different kinds of
entries depending on how a client is interacting with the server.

58

Com,

puter and Network Security by Avi Kak Lecture 24

Now create a filter to recognize some particular type of such
client interactions. And when a client is found to engage in such
an interaction with the server, either trigger a ban on the client
[P address or, at the least, get Fail2Ban to send you an email to
that effect. Look at the regex based filters in the directory
/etc/fail2ban/filters.d/ to get ideas on how you can set up
your filter.

. A very educational library for learning about the different

password hashing schemes is Apache’s Common Codec library.
Here is a link to the Apache Commons repository for all kinds of
functionality in Java: http://commons.apache.org/| and here is a link
http://commons.apache.org/proper/commons-codec/apidocs/ Speciﬁcaﬂy to
the Digest package of the Codec library that contains the Java
class sha2Crypt that implements various SHA-2 based password
hashing schemes. In particular, you will find it educational if
you look at the implementation of the Sha2Crypt class. This
implementation mirrors on a step-by-step basis the previously
mentioned specification of shas512_crypt by Ulrich Drepper at
http://www.akkadia.org/drepper/SHA-crypt.txt. As one might
expect, the defaults with respect to the salts, the rounds, etc.,
in the Python based passlib and in the Java based Sha2Crypt
are not the same. The goal of this homework is to become
familiar with the defaults in the two implementations of Ulrich
Drepper’s specification of sha512_crypt so that they produce the
same password hashes for a given password string. That is,
either by default or by specific mention, you want the two

59

http://commons.apache.org/
http://commons.apache.org/proper/commons-codec/apidocs/
http://www.akkadia.org/drepper/SHA-crypt.txt

Com,

puter and Network Security by Avi Kak

ure 24

implementations to use the same number of rounds and the
same salts.

60

