Web Server
Architectures

CS 4244: Internet Programming
Dr. Eli Tilevich

] on “Flash: An Efficient and Portable Web Server,” Vivek S. Pai, Peter
hel, and Willy Zwaenepoel, 1999 Annual Usenix Technical Conference,
arey, CA, June 1999.

o

=
Design Goals

m Performance & Quality of Service (Systems)

0 Good responsiveness; low latency
0 Good concurrency

= Can support multiple clients simultaneously
O High throughput
O Graceful degradation
0O Low memory consumption

m Ease of development (Software Engineering)

O Simple to understand, fine-tune, add new features,
debug, etc.

Virgi

What Web Servers Do

m |n response to a Web client request
(e.g., http://google.com/index.html) a Web server:

O Accepts network connection
O Parses the request (index.html)

0 Reads file from disk or runs a dynamic content
generator

O Sends content (headers and body) back

Virginia

m'l'éch

http://google.com/index.html

Single-Threaded Web Server
I o I o Y o ST

m One process sequentially handles all client connections
m Simple —requires no synchronization
m Does not scale (one client at a time)

Virgi

Optimizations?

m Caching
O Pathname translation
0 Some dynamic content
O File operations

Vieini

m'Iéch

=
Additional Features of Web Servers

m Logging
m Security (e.g., access control)
m Traffic analysis

m Require centralized data structures to implement

Virginia

m'l'éch

Main Server Architectures

m Multi-process (Apache on Unix)

m Multi-threaded (Apache on NT/XP)

m Single process event driven (Zeus, thttpd)

m Asymmetric multi-process event-driven (Flash)

Virgi

Multi-Process Architecture

Process 1
Accept Parse HTTP Read File or
Connection Reguest generate content ‘ I\ Send Data
Process N

Accept Parse HTTP Read File or
Connection Reguest generate content ‘ I\ Send Data

Utilizes multiple processors
Easy to debug
Can pre-fork a pool of processes

m Inter Process Communication is difficult and expensive
m High memory cost, context switches

Virginia

m'l'éch

Multi-Threaded Architecture
| focept] ParselTTP o Rew e o 3] SendData |

m Utilizes multiple threads, good performance
m Easy to change threading policies

m Need to synchronize, to avoid data races

m Resources utilization (kernel and user-level):
0 memory consumption, context switches, startup

m Blocking I/0 can cause deadlocks

Virginia

m'l'éch

Sinale Process Event-Driven

Read File or
generate content

[|

Event Dispatcher

Send Data ‘

[|

Parse HTTP
Request

Connection

m Use a selector to check for ready file descriptors
m Uses a finite state machine to determine how to move to the next

processing stage

m No context switching, no synchronization, single address space
m Modern OS do not provide adequate support for asynchronous disk

operations

ia
m'l'éch

N

Asymmetric Multi-Process Event-Driven
gR:r?;jrztlaec%rntent H Send Data ‘

Event Dispatcher

- []

‘ Helper 1 ‘ ‘ ohor N ‘

m Similar to Single Process Event-Driven but with helpers
for blocking 1/0O (e.g., disk requests)

Virginia

m'Iéch

B

Real Workload (On Solaris)

200 ! ; ! ; ! ! ! !
_150F
__\-_c.l.f_\._l
£ 100+ ST :
E 5 '
:I':m O SPED :
O Flash Do B
PO Zeus : : : :
+ MP : :
* Apache: :
0 I I I I I I I I
15 30 45 60 75 90 105 120 135 150

Data set size (MB)

o

Performance in WAN
(Adding Clients)

120 -
: a4

100 ,g:@? %‘«% %fﬁ __E@

= . =

= gggf

= .

=R ﬁ

= ﬁﬂ“ﬁsﬁﬁm """" S S

S o . .

S Flash. &+ !
2 it T
+MP

20 i i - '
0 100 200 300 400 500

of simultaneous clients

o

=

Performance Comparison

MP MT SPED AMPED
Disk + + - (whole +
: (only one server proc.
Blocking o100) plocks)
Memory |- + + +
Cons. (separate
mem. space
per proc.)
Disk + + - (one disk |+
request at a
Usage time)
Virginia

W'Iéch

=
Challenges of Using Threads

m Need for synchronization
m Deadlocks, starvation

m Race conditions

m Scheduling can be tricky

Virginia

m'l'éch

A
Challenges of Using Events

m Only one process/thread Is used

m High latency for long running handlers

m Control flow Is obscure

m Difficult to write, understand, and modify

Virgi

=
Hybrid Approach

m SEDA: Staged Event-Driven Architecture

0 SEDA: An Architecture for Well-Conditioned, Scalable
Internet Services, Matt Welsh, David Culler, and Eric
Brewer. In Proceedings of the Eighteenth Symposium on
Operating Systems Principles (SOSP-18), Banff, Canada,
October, 2001.

Uses thread pools and events
Events organized into stages
Each stage has a thread pool
Load conditioning; graceful degradation

Virginia

m'l'éch

	Web Server Architectures
	Design Goals
	What Web Servers Do
	Single-Threaded Web Server
	Optimizations?
	Additional Features of Web Servers
	Main Server Architectures
	Multi-Process Architecture
	Multi-Threaded Architecture
	Single Process Event-Driven
	Asymmetric Multi-Process Event-Driven
	Real Workload (On Solaris)
	Performance in WAN �(Adding Clients)
	Performance Comparison
	Challenges of Using Threads
	Challenges of Using Events
	Hybrid Approach

