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Design Goals

Performance & Quality of Service (Systems)
Good responsiveness; low latency
Good concurrency

Can support multiple clients simultaneously
High throughput
Graceful degradation
Low memory consumption

Ease of development (Software Engineering)
Simple to understand, fine-tune, add new features, 
debug, etc.



What Web Servers Do

In response to a Web client request
(e.g., http://google.com/index.html) a Web server:

Accepts network connection
Parses the request (index.html)
Reads file from disk or runs a dynamic content 
generator
Sends content (headers and body) back

http://google.com/index.html


Single-Threaded Web Server

One process sequentially handles all client connections
Simple –requires no synchronization
Does not scale (one client at a time)
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Optimizations?

Caching
Pathname translation
Some dynamic content
File operations



Additional Features of Web Servers

Logging
Security (e.g., access control)
Traffic analysis
Require centralized data structures to implement



Main Server Architectures

Multi-process (Apache on Unix)
Multi-threaded (Apache on NT/XP)
Single process event driven (Zeus, thttpd)
Asymmetric multi-process event-driven (Flash)



Multi-Process Architecture

Utilizes multiple processors
Easy to debug
Can pre-fork a pool of processes

Inter Process Communication is difficult and expensive
High memory cost, context switches
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Multi-Threaded Architecture

Utilizes multiple threads, good performance
Easy to change threading policies

Need to synchronize, to avoid data races
Resources utilization (kernel and user-level):

memory consumption, context switches, startup

Blocking I/O can cause deadlocks
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Single Process Event-Driven

Use a selector to check for ready file descriptors
Uses a finite state machine to determine how to move to the next
processing stage
No context switching, no synchronization, single address space
Modern OS do not provide adequate support for asynchronous disk 
operations
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Asymmetric Multi-Process Event-Driven

Similar to Single Process Event-Driven but with helpers 
for blocking I/O (e.g., disk requests)
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Real Workload (On Solaris)



Performance in WAN 
(Adding Clients)



Performance Comparison
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Challenges of Using Threads

Need for synchronization 
Deadlocks, starvation
Race conditions
Scheduling can be tricky



Challenges of Using Events

Only one process/thread is used
High latency for long running handlers
Control flow is obscure
Difficult to write, understand, and modify



Hybrid Approach

SEDA: Staged Event-Driven Architecture
SEDA: An Architecture for Well-Conditioned, Scalable 
Internet Services, Matt Welsh, David Culler, and Eric 
Brewer. In Proceedings of the Eighteenth Symposium on 
Operating Systems Principles (SOSP-18), Banff, Canada, 
October, 2001.

Uses thread pools and events
Events organized into stages
Each stage has a thread pool
Load conditioning; graceful degradation
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