
Web Server
Architectures

CS 4244: Internet Programming
Dr. Eli Tilevich

Based on “Flash: An Efficient and Portable Web Server,” Vivek S. Pai, Peter
Druschel, and Willy Zwaenepoel, 1999 Annual Usenix Technical Conference,
Monterey, CA, June 1999.

Design Goals

Performance & Quality of Service (Systems)
Good responsiveness; low latency
Good concurrency

Can support multiple clients simultaneously
High throughput
Graceful degradation
Low memory consumption

Ease of development (Software Engineering)
Simple to understand, fine-tune, add new features,
debug, etc.

What Web Servers Do

In response to a Web client request
(e.g., http://google.com/index.html) a Web server:

Accepts network connection
Parses the request (index.html)
Reads file from disk or runs a dynamic content
generator
Sends content (headers and body) back

http://google.com/index.html

Single-Threaded Web Server

One process sequentially handles all client connections
Simple –requires no synchronization
Does not scale (one client at a time)

Accept
Connection

Parse HTTP
Request

Read File or
generate content Send Data

Optimizations?

Caching
Pathname translation
Some dynamic content
File operations

Additional Features of Web Servers

Logging
Security (e.g., access control)
Traffic analysis
Require centralized data structures to implement

Main Server Architectures

Multi-process (Apache on Unix)
Multi-threaded (Apache on NT/XP)
Single process event driven (Zeus, thttpd)
Asymmetric multi-process event-driven (Flash)

Multi-Process Architecture

Utilizes multiple processors
Easy to debug
Can pre-fork a pool of processes

Inter Process Communication is difficult and expensive
High memory cost, context switches

Accept
Connection

Parse HTTP
Request

Read File or
generate content Send Data

Accept
Connection

Parse HTTP
Request

Read File or
generate content Send Data

…

Process 1

Process N

Multi-Threaded Architecture

Utilizes multiple threads, good performance
Easy to change threading policies

Need to synchronize, to avoid data races
Resources utilization (kernel and user-level):

memory consumption, context switches, startup

Blocking I/O can cause deadlocks

Accept
Connection

Parse HTTP
Request

Read File or
generate content Send Data

Single Process Event-Driven

Use a selector to check for ready file descriptors
Uses a finite state machine to determine how to move to the next
processing stage
No context switching, no synchronization, single address space
Modern OS do not provide adequate support for asynchronous disk
operations

Accept
Connection

Parse HTTP
Request

Read File or
generate content Send Data

Event Dispatcher

Asymmetric Multi-Process Event-Driven

Similar to Single Process Event-Driven but with helpers
for blocking I/O (e.g., disk requests)

Accept
Connection

Parse HTTP
Request

Read File or
generate content Send Data

Event Dispatcher

Helper 1 Helper N

Real Workload (On Solaris)

Performance in WAN
(Adding Clients)

Performance Comparison
MP MT SPED AMPED

Disk
Blocking

+
(only one
proc.)

+ - (whole
server proc.
blocks)

+

Memory
Cons.

-
(separate
mem. space
per proc.)

+ + +

Disk
Usage

+ + - (one disk
request at a
time)

+

Challenges of Using Threads

Need for synchronization
Deadlocks, starvation
Race conditions
Scheduling can be tricky

Challenges of Using Events

Only one process/thread is used
High latency for long running handlers
Control flow is obscure
Difficult to write, understand, and modify

Hybrid Approach

SEDA: Staged Event-Driven Architecture
SEDA: An Architecture for Well-Conditioned, Scalable
Internet Services, Matt Welsh, David Culler, and Eric
Brewer. In Proceedings of the Eighteenth Symposium on
Operating Systems Principles (SOSP-18), Banff, Canada,
October, 2001.

Uses thread pools and events
Events organized into stages
Each stage has a thread pool
Load conditioning; graceful degradation

	Web Server Architectures
	Design Goals
	What Web Servers Do
	Single-Threaded Web Server
	Optimizations?
	Additional Features of Web Servers
	Main Server Architectures
	Multi-Process Architecture
	Multi-Threaded Architecture
	Single Process Event-Driven
	Asymmetric Multi-Process Event-Driven
	Real Workload (On Solaris)
	Performance in WAN �(Adding Clients)
	Performance Comparison
	Challenges of Using Threads
	Challenges of Using Events
	Hybrid Approach

