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Design Goals

m Performance & Quality of Service (Systems)

0 Good responsiveness; low latency
0 Good concurrency

= Can support multiple clients simultaneously
O High throughput
O Graceful degradation
0O Low memory consumption

m Ease of development (Software Engineering)

O Simple to understand, fine-tune, add new features,
debug, etc.
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What Web Servers Do

m |n response to a Web client request
(e.g., http://google.com/index.html) a Web server:

O Accepts network connection
O Parses the request (index.html)

0 Reads file from disk or runs a dynamic content
generator

O Sends content (headers and body) back
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http://google.com/index.html

Single-Threaded Web Server
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m One process sequentially handles all client connections
m Simple —requires no synchronization
m Does not scale (one client at a time)
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Optimizations?

m Caching
O Pathname translation
0 Some dynamic content
O File operations
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Additional Features of Web Servers

m Logging
m Security (e.g., access control)
m Traffic analysis

m Require centralized data structures to implement
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Main Server Architectures

m Multi-process (Apache on Unix)

m Multi-threaded (Apache on NT/XP)

m Single process event driven (Zeus, thttpd)

m Asymmetric multi-process event-driven (Flash)
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Multi-Process Architecture

Process 1
Accept Parse HTTP Read File or
Connection Reguest generate content ‘ I\ Send Data
Process N

Accept Parse HTTP Read File or
Connection Reguest generate content ‘ I\ Send Data

Utilizes multiple processors
Easy to debug
Can pre-fork a pool of processes

m Inter Process Communication is difficult and expensive
m  High memory cost, context switches
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Multi-Threaded Architecture
| focept ] ParselTTP o Rew e o 3] SendData |

m Utilizes multiple threads, good performance
m Easy to change threading policies

m Need to synchronize, to avoid data races

m Resources utilization (kernel and user-level):
0 memory consumption, context switches, startup

m Blocking I/0 can cause deadlocks
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Sinale Process Event-Driven

Read File or
generate content

[ |

Event Dispatcher

Send Data ‘

[ |

Parse HTTP
Request

Connection

m Use a selector to check for ready file descriptors
m Uses a finite state machine to determine how to move to the next

processing stage

m No context switching, no synchronization, single address space
m Modern OS do not provide adequate support for asynchronous disk

operations
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Asymmetric Multi-Process Event-Driven
gR:r?;jrztlaec%rntent H Send Data ‘

Event Dispatcher

- [ ]

‘ Helper 1 ‘ ‘ ohor N ‘

m Similar to Single Process Event-Driven but with helpers
for blocking 1/0O (e.g., disk requests)
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Real Workload (On Solaris)
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Performance in WAN
(Adding Clients)
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Performance Comparison

MP MT SPED AMPED
Disk + + - (whole +
: (only one server proc.
Blocking o100) plocks)
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request at a
Usage time)
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Challenges of Using Threads

m Need for synchronization
m Deadlocks, starvation

m Race conditions

m Scheduling can be tricky
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Challenges of Using Events

m Only one process/thread Is used

m High latency for long running handlers

m Control flow Is obscure

m Difficult to write, understand, and modify
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Hybrid Approach

m SEDA: Staged Event-Driven Architecture

0 SEDA: An Architecture for Well-Conditioned, Scalable
Internet Services, Matt Welsh, David Culler, and Eric
Brewer. In Proceedings of the Eighteenth Symposium on
Operating Systems Principles (SOSP-18), Banff, Canada,
October, 2001.

Uses thread pools and events
Events organized into stages
Each stage has a thread pool
Load conditioning; graceful degradation
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