Authentication Bypass

Application patching in Android refers to the process of modifying an app to test its resilience against unauthorized changes or to better understand its
behavior under different conditions. This technique can reveal potential vulnerabilities and provide insight into how the application responds when
specific components are altered. Due to the open nature of the Android platform, it is crucial for penetration testers to have a solid understanding of
application patching and its role in mobile security assessments. One key benefit of this approach is that it enables testers to simulate attacks by
bypassing certain functionalities—such as authentication mechanisms—to determine what unauthorized actions can be performed. This helps identify

and remediate security loophooles, ultimately enhancing the overall security of the application.

Among the various patching techniques available, this section focuses on a common method involving the decompilation of an APK file to inspect and
modify its source code or resource files using tools such as JADX and APKTool. In the example below, we'll examine an application that requires user
authentication before granting access to its features. We'll attempt to bypass this restriction using application patching. Although the steps will be
demonstrated on an Android Virtual Device (AVD) emulator, the process is also applicable to other Android emulators or physical devices. Once the

emulator is running, use the following commands to connect to the device via ADB (Android Debug Bridge) and install the application:

o O Authentication Bypass

rl1k@htb[/htb]$ adb connect
rllk@htb[/htb]$ adb install myapp.apk

Performing Streamed Install
Success

Starting the application and attempting to log in with the random credentials test/test will display the following message.

Myapp

test

LOGIN

) Wrong username or password!

Now, let's use JADX to read its source.

o0 Authentication Bypass

rl1k@htb[/htb]$ jadx-gui myapp.apk

myapp.apk
Source code
android.sunnort.v4d /* JADX INFO: Access modifiers changed from: protected */

¢, MainActivity

a0verride
// androidx.fragment.app.FragmentActivity, androidx.activity.ComponentActivity, androidx
com .core.app.ComponentActivity, android.app.Activity
google public void onCreate(Bundle savedInstanceState) {
hackthebox.myapp super.onCreate(savedInstanceState);
databinding sgtContentView(R. layout.activity_main);
final EditText editText = (EditText) findViewById(R.id.usernameEditText);
AppDatabase final EditText editText2 = (EditText) findViewById(R.id.passwordEditText);
AppDatabase_Impl ((Button) findViewById(R.id.loginButton)).setOnClickListener(new View.
DatabaseClient OnClickListener() { // from class: com.hackthebox.myapp.MainActivity.1
: - d0verride // android.view.View.OnClickListener
SR public void onClick(View view) {
R MainActivity.this.authenticateUser(editText.getText().toString().trim(),
User editText2.getText().toString().trim());
UserDao }

UserDao_Impl H;
kotlin

androidx

On the left side of the window, we can tell from the activity names that the app might use a database to authenticate users locally. The MainActivity
class—as seen the above snippet—indicates a call to the method authentication(), which takes two parameters. Double-clicking on this method

shows the following snippet.

/* JADX INFO: Access modifiers changed from: private */

/* JADX WARN: Type inference failed for: rév@, types: [com.hackthebox.myapp.MainActivity
$1AuthenticateUser] */
public void puthenticateUser(final String username, final String password) {
new AsyncTask<Void, Void, User>() {
// from class: com.hackthebox.myapp.MainActivity.lAuthenticateUser
/* JADX INFO: Access modifiers changed from: protected */
d0verride // android.os.AsyncTask
public User doInBackground(Void... voids) {
return DatabaseClient.getInstance(MainActivity.this.
getApplicationContext()).getAppDatabase().userDao().getUser(username, password);
}

/* JADX INFO: Access modifiers changed from: protected */

d0verride // android.os.AsyncTask
public void onPostExecute(User user) {
super.onPostExecute((ClAuthenticateUser) user);
if (user !'= null) {
MainActivity mainActivity = MainActivity.this;
Toast.makeText (mainActivity, mainActivity.stringFromINI(), 1).show()

return;
}

Toast.makeText(MainActivity.this, "Wrong username or password!", 1).show

}
}.execute(new Void[0]);

The method authenticateUser uses an asynchronous task to verify user credentials. It takes username and password as parameters and queries the
database in the doInBackground method for a matching User object. If a user is found, a specific toast message is displayed. If no user is found
(indicating invalid credentials), the "Wrong username or password!" message is shown. This process is executed in the background to avoid Ul

interruption. Let's try to patch the application and bypass this authentication mechanism. First, we need to decompile the APK file using APKTool.

o0 Authentication Bypass

rl1k@htb[/htb]$ apktool d myapp.apk

Using Apktool 2.7.0 on myapp.apk

Loading resource table...

Decoding AndroidManifest.xml with resources...
Loading resource table from file: /Users/bertolis/Library/apktool/framework/1.apk
Regular manifest package...

Decoding file-resources...

Decoding values /% XMLs...

Baksmaling classes.dex...

Copying assets and libs...

Copying unknown files...

Copying original files...

Copying META-INF/services directory

HHH H H H H H H H H H

Decompiling the app using the APKTool will give us the Smali representation of the source code. This, apart from allowing one to analyze and
understand the application's functionality and behavior, will also enable pen-testers to edit the code and change the flow of the app. Listing the content

of the directory myapp/smali/com/hackthebox/myapp/ reveals the following files.

o O Authentication Bypass

IIILIIJIII

rl1k@htbl/htb]$ 1s -1 myapp/smali/com/hackthebox/myapp

total 208

-rw-r--r-- 1 bertolis bertolis 393 Nov 13 12:40 AppDatabase.smali
-rw-r--r-- 1 bertolis bertolis 11254 Nov 13 12:40 AppDatabase_Impl$1.smali
-rw-r--r-- 1 bertolis bertolis 10632 Nov 13 12:40 AppDatabase_Impl.smali
-rw-r--r-- 1 bertolis bertolis 2836 Nov 13 12:40 DatabaseClient.smali
-rw-r--r-- 1 bertolis bertolis 3083 Nov 13 12:40 MainActivity$l.smali
-rw-r--r-- 1 bertolis bertolis 5722 Nov 13 12:40 MainActivity$lAuthenticateUser.smali
-rw-r--r-- 1 bertolis bertolis 3474 Nov 13 12:40 MainActivity.smali
<SNIP>

-rw-r--r-- 1 bertolis bertolis 651 Nov 13 12:40 R.smali

-rw-r--r-- 1 bertolis bertolis 379 Nov 13 12:40 User.smali

-rw-r--r-- 1 bertolis bertolis 721 Nov 13 12:40 UserDao.smali

-rw-r--r-- 1 bertolis bertolis 3649 Nov 13 12:40 UserDao_Impl$1l.smali
-rw-r--r-- 1 bertolis bertolis 7643 Nov 13 12:40 UserDao_Impl.smali
drwxr-xr-x 3 bertolis bertolis 96 Nov 13 12:40 databinding

Among other files, MainActivity.smali is also listed. Let's open it with a text editor and try to locate the if statement that checks for our username/
password in the database. The smali representation of the code contains plaintext, hardcoded strings. Therefore, a good practice that will save us some
time is to search for the message Wrong username or password!, as it will almost certainly be included in the if statement. However, searching for

this string inside the MainActivity.smali returns nothing.

® 00 Authentication Bypass

rllk@htb[/htb]$ grep -Rnw './myapp/smali/com/hackthebox/myapp/MainActivity.smali' -e 'Wrong username or password!'

Since the method's name is authenticateUser.smali, we should check the content of the class MainActivity$1AuthenticateUser.smali.

o 00 Authentication Bypass

rl1k@htb[/htb]$ grep -Rnw './myapp/smali/com/hackthebox/myapp/MainActivity$1AuthenticateUser.smali' -e 'Wrong username or pas

./myapp/smali/com/hackthebox/myapp/MainActivity$1AuthenticateUser.smali:174: const-string v1, "Wrong username or password!

This is successful. Opening this file using a text editor allows us to navigate to the following snippet of smalli code.

o 00 Authentication Bypass

rllk@htb[/htb]$ vim myapp/smali/com/hackthebox/myapp/MainActivity\$1AuthenticateUser.smali

Code: smali
<SNIP>
if-eqz pl, :cond_0
.line 76

iget-object pl, p0O, Lcom/hackthebox/myapp/MainActivity$lAuthenticateUser;->this$0:Lcom/hackthebox/myapp/MainActivity;

invoke-virtual {pl}, Lcom/hackthebox/myapp/MainActivity;->stringFromJNI()Ljava/lang/String;

move-result-object vl

invoke-static {pl1, v1, vB0}, Landroid/widget/Toast;->makeText(Landroid/content/Context;Ljava/lang/CharSequence;I)Landroid/

move-result-object pl

invoke-virtual {pl}, Landroid/widget/Toast;->show()V

goto :goto_0

.line 78

:cond_0
iget-object p1, pO, Lcom/hackthebox/myapp/MainActivity$1AuthenticateUser;->this$0:Lcom/hackthebox/myapp/MainActivity;

const-string v1, "Wrong username or password!"

invoke-static {pl1l, v1, v0}, Landroid/widget/Toast;->makeText(Landroid/content/Context;Ljava/lang/CharSequence;I)Landroid/
<SNIP>

Reading the snippet above, we notice the line if-eqz pl, :cond_0, where the if-eqz instruction (meaning "if equals zero") checks whether the User
object (p1) is null. If it is, execution jumps to the label :cond_0, where the instruction const-string v1, "Wrong username or password!" is executed.
This message is displayed on the screen when the user is not found. Let's try changing if-eqz to if-nez (meaning "if not equals zero"). This

modification will cause the login to succeed even if the user is not found in the database. Below is the modified snippet:

Code: smali

<SNIP>
if-nez pl, :cond_0

.line 76
iget-object pl, pO, Lcom/hackthebox/myapp/MainActivity$lAuthenticateUser;->this$0:Lcom/hackthebox/myapp/MainActivity;
<SNIP>

Once it's changed, recompile the APK file using the following command.

o 00 Authentication Bypass

rllk@htb[/htb]$ apktool b myapp

: Using Apktool 2.7.0
: Checking whether sources has changed...

: Smaling smali folder into classes.dex...
: Checking whether resources has changed...
: Building resources...

: Copying libs... (/1ib)

: Copying 1libs... (/kotlin)

: Copying libs... (/META-INF/services)

: Building apk file...

: Copying unknown files/dir...

: Built apk into: myapp/dist/myapp.apk

H oH H H H H H H H H H

The new APK file is located on myapp/dist/ directory. Before installing it on the device, we must create a key and sign the app. We can do this using the

following commands.

o 00 Authentication Bypass

rl1k@htb[/htb]$ echo -e "password\npassword\njohn doe\ntest\ntest\ntest\ntest\ntest\nyes" > params.txt
rllk@htb[/htb]$ cat params.txt | keytool -genkey -keystore key.keystore -validity 1000 -keyalg RSA -alias john
rl1k@htb[/htb]$ zipalign -p -f -v 4 myapp/dist/myapp.apk myapp_aligned.apk

rllk@htb[/htb]$ echo password | apksigner sign --ks key.keystore myapp_aligned.apk

Keystore password for signer #1:

Finally, before installing the signed APK, we need to uninstall any left over app from previous exercises. We can do this from the device, or if we know
the app's package name (which can be retrueved using the command adb shell ps | grep myapp while the app is running), we can do it through

ADB. Then, we can use ADB again to install the new one.

® 00 Authentication Bypass

rl1k@htb[/htb]$ adb uninstall com.hackthebox.myapp
rllk@htb[/htb]$ adb install myapp_aligned.apk

=4

Serving...

A1l files should be loaded. Notifying the device.
Success

Install command complete in 592 ms

Once installed, we can tap on it and try to log in using the credentials test/test.

Myapp

test

LOGIN

Login Bypassed.

The local authentication mechanism has been successfully bypassed by patching the application. Although real world applications use server-side
authentication, bypassing the client-side login can directly provide access to APIs or data endpoints that are not adequately protected.

Connect to Pwnbox
Your own web-based Parrot Linux instance to play our labs.

Pwnbox Location

(U] ¢ 31ms v

Terminate Pwnbox to switch location

Start Instance

OO/ 1 spawns left

Waiting to start...

Enable step-by-step solutions for all questions @ &+

Questions

iy

Cheat Sheet
Answer the question(s) below to complete this Section and earn cubes!

+38 Whatis the message displayed on the screen after bypassing the login mechanism?

Submit your answer here...

+10 Streak pts | P Submit | & myapp_auth_bypass.zip

4 Previous Next =»

2 Cheat Sheet

? Goto Questions

Table of Contents

Extracting and Enumerating APK Files

& Introduction

@ Disassembling the APK

Understanding Smali

Analyzing Application's Source Code

@ Reading Hardcoded Strings

Bad Cryptography Implementation

Reversing Hybrid Apps

Reading Obfuscated Code

@ @ & @&

Deobfuscating Code

Analyzing Native Libraries

& Reversing Shared Objects

@ Reversing DLL Files

Application Patching

@

@ Modifying Game Apps

@ License Verification Bypass
@

Root Detection Bypass

Skills Assessment

& Skills Assessment

https://academy.hackthebox.com/storage/modules/221/myapp_auth_bypass.zip
https://academy.hackthebox.com/storage/modules/221/myapp_auth_bypass.zip
https://academy.hackthebox.com/storage/modules/221/myapp_auth_bypass.zip
https://academy.hackthebox.com/storage/modules/221/myapp_auth_bypass.zip
https://academy.hackthebox.com/storage/modules/221/myapp_auth_bypass.zip
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2439
https://academy.hackthebox.com/module/221/section/2439
https://academy.hackthebox.com/module/221/section/2439
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2365
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2392
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2615
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2628
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2630
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2633
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2666
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2676
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2682
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2695
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2714
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2715
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2716
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2953
https://academy.hackthebox.com/module/221/section/2953

My Workstation

OFFLINE

» Start Instance

OO/ 1 spawns left

