
When it comes to cracking passwords, there are
three types of attacks:

• Brute force: Which attempts to guess the
password by sequentially working through
every possible letter, number, and special
character combination. This is a painfully slow
process, but effective.

• Dictionary: This attack leverages a file
containing lists of common passwords
(usually taken from a breach of some kind) to
guess a given password. Can be helpful in
CTFs, but nowadays it can be difficult to apply
this type of attack in the real world.

• Rainbow table: Rainbow tables are a series of
pre-computed hashes. The idea is that these
rainbow tables include all hashes for a given
algorithm. So instead of cracking the hash/
password/etc. you perform a look up of the
hash in the table. Do note that this takes
considerable processing power to achieve.

For this article, lets perform a dictionary attack.
To do that, first we need a dictionary to attack
with. The easiest to acquire
is rockyou.txt. rockyou.txt is a set of compromised
passwords from the social media application
developer RockYou. Note: you can download
rockyou.txt.gz from here, if you’re not using Kali
Linux.

NOTE/USAGE of JohnTheRipper

 To use John, you just need to supply it a password file and the
desired options. If no
 mode is specified, john will try "single" first, then
"wordlist" and finally
 "incremental".

 Once John finds a password, it will be printed to the
terminal and saved into a file
 called ~/.john/john.pot. John will read this file when it restarts
so it doesn't try to crack already done passwords. That’s why if you
want to retry to crack the same file, it’s better to go to “/.john/“ and
delete the content inside that file; the “john.pot”.

Command to bruteforce a hashed password inside a text file with JtR:

/usr/sbin/john --wordlist=/usr/share/wordlists/rockyou.txt JeanText-file-
which-contains-the-hash-password.txt

OR just type into a terminal:
john --wordlist=/usr/share/wordlists/rockyou.txt JeanText-file-which-
contains-the-hash-password.txt

https://www.theregister.co.uk/2010/01/21/lame_passwords_exposed_by_rockyou_hack/
https://wiki.skullsecurity.org/Passwords

 To see the cracked passwords, use

 john -show passwd

 Important: do this under the same directory where the password was
cracked (when using the
 cronjob, /var/lib/john), otherwise it won't work.

 While cracking, you can press any key for status, or Ctrl+C to
abort the session, saving
 point information to a file (~/.john/john.rec by default).
By the way, if you press
 Ctrl+C twice John will abort immediately without saving. The point
information is also
 saved every 10 minutes (configurable in the configuration
file, ~/.john/john.ini or
 ~/.john/john.conf) in case of a crash.

 To continue an interrupted session, run:

 john -restore

 Now, you may notice that many accounts have a disabled shell, you
can make John ignore
 these (assume that shell is called /etc/expired):

 john -show -shells:-/etc/expired passwd

 You might want to mail all the users who got weak passwords, to
tell them to change the
 passwords. It's not always a good idea though (unfortunately,
lots of people seem to
 ignore such mail, it can be used as a hint for crackers, etc), but
anyway, I'll assume you
 know what you're doing. Get a copy of the 'mailer' script supplied
with John, so you won't
 change anything that's under /usr/sbin ; edit the message it
sends, and possibly the mail
 command inside it (especially if the password file is from a
different box than you got
 John running on). Then run:

 ./mailer passwd

 Anyway, you probably should have a look at /usr/share/doc/john/
OPTIONS for a list of all
 the command line options, and at /usr/share/doc/john/EXAMPLES for
more John usage examples
 with other cracking modes.

OPTIONS

 All the options recognized by john start with a single dash
(`-'). A summary of options
 is included below.

 -external:MODE
 Enables an external mode, using external functions
defined in ~/john.ini's
 [List.External:MODE] section.

 -format:NAME
 Allows you to override the ciphertext format detection.
Currently, valid format
 names are DES, BSDI, MD5, BF, AFS, LM. You can use this
option when cracking or
 with '-test'. Note that John can't crack password files
with different ciphertext
 formats at the same time.

 -groups:[-]GID[,..]
 Tells John to load users of the specified group(s) only.

 -incremental[:MODE]
 Enables the incremental mode, using the specified ~/
john.ini definition (section
 [Incremental:MODE], or [Incremental:All] by default).

 -makechars:FILE
 Generates a charset file, based on character frequencies
from ~/.john/john.pot, for
 use with the incremental mode. The entire ~/.john/john.pot
will be used for the
 charset file unless you specify some password files. You
can also use an external
 filter() routine with this option.

 -restore[:FILE]
 Continues an interrupted cracking session, reading point
information from the
 specified file (~/.john/john.rec by default).

 -rules Enables wordlist rules, that are read from
[List.Rules:Wordlist] in
 /etc/john/john.conf (or the alternative configuration file
you might specify on the
 command line).
 This option requires the -wordlist option to be passed as
well.

 -salts:[-]COUNT
 This feature sometimes allows you to achieve better
performance. For example you
 can crack only some salts using '-salts:2' faster, and then
crack the rest using
 '-salts:-2'. Total cracking time will be about the
same, but you will get some
 passwords cracked earlier.

 -savemem:LEVEL
 You might need this option if you don't have enough memory,
or don't want John to
 affect other processes too much. Level 1 tells John not
to waste memory on login
 names, so you won't see them while cracking. Higher
levels have a performance
 impact: you should probably avoid using them unless John
doesn't work or gets into
 swap otherwise.

 -session:FILE
 Allows you to specify another point information file's
name to use for this
 cracking session. This is useful for running multiple
instances of John in
 parallel, or just to be able to recover an older session
later, not always continue
 the latest one.

 -shells:[-]SHELL[,..]
 This option is useful to load accounts with a valid
shell only, or not to load
 accounts with a bad shell. You can omit the path
before a shell name, so
 '-shells:csh' will match both '/bin/csh' and
'/usr/bin/csh', while
 ´-shells:/bin/csh' will only match '/bin/csh'.

 -show Shows the cracked passwords in a convenient form. You
should also specify the
 password files. You can use this option while another John
is cracking, to see what
 it did so far.

 -single
 Enables the "single crack" mode, using rules from
[List.Rules:Single].

 -status[:FILE]
 Prints status of an interrupted or running session. To get
an up to date status
 information of a detached running session, send that copy
of John a SIGHUP before
 using this option.

 -stdin These are used to enable the wordlist mode (reading from
stdin).

 -stdout[:LENGTH]
 When used with a cracking mode, except for "single crack",
makes John print the
 words it generates to stdout instead of cracking. While
applying wordlist rules,
 the significant password length is assumed to be LENGTH, or
unlimited by default.

 -test Benchmarks all the enabled ciphertext format crackers, and
tests them for correct
 operation at the same time.
 This option does not need any file passed as argument.
Its only function is to
 benchmark the system john is running on.

 -users:[-]LOGIN|UID[,..]
 Allows you to filter a few accounts for cracking, etc. A
dash before the list can
 be used to invert the check (that is, load all the users
that aren't listed).

 -wordlist:FILE
 These are used to enable the wordlist mode, reading words
from FILE.

MODES

 John can work in the following modes:

 Wordlist
 John will simply use a file with a list of words that will
be checked against the
 passwords. See RULES for the format of wordlist files.

 Single crack
 In this mode, john will try to crack the password using the
login/GECOS information
 as passwords.

 Incremental
 This is the most powerful mode. John will try any character
combination to resolve
 the password. Details about these modes can be found in the
MODES file in john's
 documentation, including how to define your own cracking
methods.

FILES

 /etc/john/john.conf
 is where you configure how john will behave.

 /etc/john/john-mail.msg
 has the message sent to users when their passwords are
successfully cracked.

 /etc/john/john-mail.conf
 is used to configure how john will send messages to users
that had their passwords cracked.

SEE ALSO

 mailer(8), unafs(8), unique(8), unshadow(8),

 The programs and the configuration files are documented fully by
John's documentation, which should be available in /usr/share/doc/
john or other location, depending on your system.
https://manpages.ubuntu.com/manpages/xenial/man8/john.8.html

SSH keys
To test out JtR’s SSH key password cracking
prowess, first create a set of new private
keys. Note: JtR isn’t cracking the file itself (i.e. the
number of bytes in the generated key doesn’t

https://manpages.ubuntu.com/manpages/xenial/man8/mailer.8.html
https://manpages.ubuntu.com/manpages/xenial/man8/unafs.8.html
https://manpages.ubuntu.com/manpages/xenial/man8/unique.8.html
https://manpages.ubuntu.com/manpages/xenial/man8/unshadow.8.html
https://manpages.ubuntu.com/manpages/xenial/man8/john.8.html

matter), JtR is just cracking the private key’s
encrypted password.
In this case create the public/private key pair with
a predictable password:
Create some private key
ssh-keygen -t rsa -b 4096
Create encrypted zip
/usr/sbin/ssh2john ~/.ssh/id_rsa > id_rsa.hash
Next, all you need to do is point John the Ripper
to the given file, with your dictionary:
/usr/sbin/john --wordlist=/usr/share/wordlists/
rockyou.txt id_rsa.hash

And voila!

Keepass2 database
What about Keepass? If you’re not aware, Keepass
is an open source, cross-platform, password
management vault. For those paranoid individuals
who fear storing all their secrets in the cloud (i.e.
with LastPass).
So lets create a vault to attack. First, install
Keepass CLI (“kpcli”).

sudo apt-get install -y kpcli
Next, create a vault. You don’t need to store any
passwords in the vault, an empty vault will do.
$ kpcli
KeePass CLI (kpcli) v3.1 is ready for operation.
Type 'help' for a description of available
commands.
Type 'help <command>' for details on individual
commands.
kpcli:/> saveas newdb.kdb
Please provide the master password:

Retype to verify: *************************
kpcli:/> exit
As with attacking both SSH private keys, and
Linux password hashes, convert the Keepass
database to a JtR compatible format.
/usr/sbin/keepass2john newdb.kdb >
newdb.kdb.hash
And attack!
/usr/sbin/john --wordlist=/usr/share/wordlists/
rockyou.txt newdb.kdb.hash

RAR
Next, lets go after the Roshal Archive (“RAR”)
format. To create an encrypted RAR archive file
on Linux, perform the following:
Install rar
sudo apt-get install -y rar
Create some dummy file
echo "Hello" > anything.txt

Now follow the 3 steps below:

1) Create an encrypted RAR file with the
password "blablabla"
rar a -hpblablabla encrypted.rar anything.txt

2) Next, lets convert it to JtR’s cracking format:
/usr/sbin/rar2john encrypted.rar >
encryptedBla.hash

OR, just type in a terminal: rar2john
encrypted.rar > encryptedBla.hash

3) And fire away!
“john --wordlist=/usr/share/wordlists/
rockyou.txt encryptedBla.hash”, without quotes.

https://en.wikipedia.org/wiki/RAR_(file_format)

That’s it!!!

