
Idle Scan Step by Step

Fundamentally, an idle scan consists of three steps that are repeated for each port:

1. Probe the zombie's IP ID and record it.  

2. Forge a SYN packet from the zombie and send it to the desired port on the target.
Depending on the port state, the target's reaction may or may not cause the zombie's IP ID
to be incremented.  

3. Probe the zombie's IP ID again. The target port state is then determined by comparing this
new IP ID with the one recorded in step 1.  

After this process, the zombie's IP ID should have increased by either one or two. An increase of
one indicates that the zombie hasn't sent out any packets, except for its reply to the attacker's
probe. This lack of sent packets means that the port is not open (the target must have sent the
zombie either a RST packet, which was ignored, or nothing at all). An increase of two indicates
that the zombie sent out a packet between the two probes. This extra packet usually means that
the port is open (the target presumably sent the zombie a SYN/ACK packet in response to the
forged SYN, which induced a RST packet from the zombie). Increases larger than two usually
signify a bad zombie host. It might not have predictable IP ID numbers, or might be engaged in
communication unrelated to the idle scan.

Even though what happens with a closed port is slightly different from what happens with a
filtered port, the attacker measures the same result in both cases, namely, an IP ID increase of 1.
Therefore it is not possible for the idle scan to distinguish between closed and filtered ports.
When Nmap records an IP ID increase of 1 it marks the port closed|filtered.

For those wanting more detail, the following three diagrams show exactly what happens in the
three cases of an open, closed, and filtered port. The actors in each are:

 the attacker, the zombie, and the target.

Figure 5.6. Idle scan of an open port

Figure 5.7. Idle scan of a closed port

Figure 5.8. Idle scan of a filtered port

Idle scan is the ultimate stealth scan. Nmap offers decoy scanning (-D) to help users shield their
identity, but that (unlike idle scan) still requires an attacker to send some packets to the target
from his real IP address in order to get scan results back. One upshot of idle scan is that intrusion
detection systems will generally send alerts claiming that the zombie machine has launched a

scan against them. So it can be used to frame some other party for a scan. Keep this possibility in
mind when reading alerts from your IDS.

A unique advantage of idle scan is that it can be used to defeat certain packet filtering firewalls
and routers. IP source address filtering is a common (though weak) security mechanism for
limiting machines that may connect to a sensitive host or network. For example, a company
database server might only allow connections from the public web server that accesses it. Or a
home user might only allow SSH (interactive login) connections from his work machines.

A more disturbing scenario occurs when some company bigwig demands that network
administrators open a firewall hole so he can access internal network resources from his home IP
address. This can happen when executives are unwilling or unable to use secure VPN
alternatives.

Idle scanning can sometimes be used to map out these trust relationships. The key factor is that
idle scan results list open ports from the zombie host's perspective. A normal scan against the
aforementioned database server might show no ports open, but performing an idle scan while
using the web server's IP as the zombie could expose the trust relationship by showing the
database-related service ports as open.

Mapping out these trust relationships can be very useful to attackers for prioritizing targets. The
web server discussed above may seem mundane to an attacker until she notices its special
database access.

A disadvantage to idle scanning is that it takes far longer than most other scan types. Despite the
optimized algorithms described in the section called “Idle Scan Implementation Algorithms”, A
15-second SYN scan could take 15 minutes or more as an idle scan. Another issue is that you
must be able to spoof packets as if they are coming from the zombie and have them reach the
target machine. Many ISPs (particularly dialup and residential broadband providers) now
implement egress filtering to prevent this sort of packet spoofing. Higher end providers (such as
colocation and T1 services) are much less likely to do this. If this filtering is in effect, Nmap will
print a quick error message for every zombie you try. If changing ISPs is not an option, you
might try using another IP on the same ISP network. Sometimes the filtering only blocks
spoofing of IP addresses that are outside the range used by customers. Another challenge with
idle scan is that you must find a working zombie host, as described in the next section.

Finding a Working Idle Scan Zombie Host

The first step in executing an IP ID idle scan is to find an appropriate zombie. It needs to assign
IP ID packets incrementally on a global (rather than per-host it communicates with) basis. It
should be idle (hence the scan name), as extraneous traffic will bump up its IP ID sequence,
confusing the scan logic. The lower the latency between the attacker and the zombie, and
between the zombie and the target, the faster the scan will proceed.

When an idle scan is attempted, Nmap tests the proposed zombie and reports any problems with
it. If one doesn't work, try another. Enough Internet hosts are vulnerable that zombie candidates

https://nmap.org/book/idlescan.html#scan-methods-idle-scan-algorithms

aren't hard to find. Since the hosts need to be idle, choosing a well-known host such as
www.yahoo.com or google.com will almost never work.

A common approach is to simply execute a Nmap ping scan of some network. You could use
Nmap's random IP selection mode (-iR), but that is likely to result in far away zombies with
substantial latency. Choosing a network near your source address, or near the target, produces
better results. You can try an idle scan using each available host from the ping scan results until
you find one that works. As usual, it is best to ask permission before using someone's machines
for unexpected purposes such as idle scanning.

We didn't just choose a printer icon to represent a zombie in our illustrations to be funny—simple
network devices often make great zombies because they are commonly both underused (idle) and
built with simple network stacks which are vulnerable to IP ID traffic detection.

Performing a port scan and OS identification (-O) on the zombie candidate network rather than
just a ping scan helps in selecting a good zombie. As long as verbose mode (-v) is enabled, OS
detection will usually determine the IP ID sequence generation method and print a line such
as “IP ID Sequence Generation: Incremental”. If the type is given
as Incremental or Broken little-endian incremental, the machine is a good
zombie candidate. That is still no guarantee that it will work, as Solaris and some other systems
create a new IP ID sequence for each host they communicate with. The host could also be too
busy. OS detection and the open port list can also help in identifying systems that are likely to be
idle.

Another approach to identifying zombie candidates is the run the ipidseq NSE script against a
host. This script probes a host to classify its IP ID generation method, then prints the IP ID
classification much like the OS detection does. Like most NSE scripts, ipidseq.nse can be
run against many hosts in parallel, making it another good choice when scanning entire networks
looking for suitable hosts.

While identifying a suitable zombie takes some initial work, you can keep re-using the good
ones.

Executing an Idle Scan

Once a suitable zombie has been found, performing a scan is easy. Simply specify the zombie
hostname to the -sI option and Nmap does the rest. Example 5.19 shows an example of
Ereet scanning the Recording Industry Association of America by bouncing an idle scan off an
Adobe machine named Kiosk.

Example 5.19. An idle scan against the RIAA

nmap -Pn -p- -sI kiosk.adobe.com www.riaa.com

Starting Nmap (http://nmap.org)
Idlescan using zombie kiosk.adobe.com (192.150.13.111:80);
Class: Incremental

http://nmap.org/nsedoc/scripts/ipidseq.html
https://nmap.org/book/idlescan.html#scan-methods-ex-idle-scan

Nmap scan report for 208.225.90.120
(The 65522 ports scanned but not shown below are in state:
closed)
Port State Service
21/tcp open ftp
25/tcp open smtp
80/tcp open http
111/tcp open sunrpc
135/tcp open loc-srv
443/tcp open https
1027/tcp open IIS
1030/tcp open iad1
2306/tcp open unknown
5631/tcp open pcanywheredata
7937/tcp open unknown
7938/tcp open unknown
36890/tcp open unknown

Nmap done: 1 IP address (1 host up) scanned in 2594.47 seconds

From the scan above, we learn that the RIAA is not very security conscious (note the open PC
Anywhere, portmapper, and Legato nsrexec ports). Since they apparently have no firewall, it is
unlikely that they have an IDS. But if they do, it will show kiosk.adobe.com as the scan culprit.
The -Pn option prevents Nmap from sending an initial ping packet to the RIAA machine. That
would have disclosed Ereet's true address. The scan took a long time because -p- was specified
to scan all 65K ports. Don't try to use kiosk for your scans, as it has already been removed.

By default, Nmap forges probes to the target from the source port 80 of the zombie. You can
choose a different port by appending a colon and port number to the zombie name (e.g. -sI
kiosk.adobe.com:113). The chosen port must not be filtered from the attacker or the
target. A SYN scan of the zombie should show the port in the open or closed state.

Idle Scan Implementation Algorithms

While the section called “Idle Scan Step by Step” describes idle scan at the fundamental level,
the Nmap implementation is far more complex. Key differences are parallelism for quick
execution and redundancy to reduce false positives.

Parallelizing idle scan is trickier than with other scan techniques due to indirect method of
deducing port states. If Nmap sends probes to many ports on the target and then checks the new
IP ID value of the zombie, the number of IP ID increments will expose how many target ports are
open, but not which ones. This isn't actually a major problem, as the vast majority of ports in a
large scan will be closed|filtered. Since only open ports cause the IP ID value to
increment, Nmap will see no intervening increments and can mark the whole group of ports
as closed|filtered. Nmap can scan groups of up to 100 ports in parallel. If Nmap probes a
group then finds that the zombie IP ID has increased <N> times, there must be <N> open ports

https://nmap.org/book/idlescan.html#scan-methods-idle-scan-steps

among that group. Nmap then finds the open ports with a binary search. It splits the group into
two and separately sends probes to each. If a subgroup shows zero open ports, that group's ports
are all marked closed|filtered. If a subgroup shows one or more open ports, it is divided
again and the process continues until those ports are identified. While this technique adds
complexity, it can reduce scan times by an order of magnitude over scanning just one port at a
time.

Reliability is another major idle scanning concern. If the zombie host sends packets to any
unrelated machines during the scan, its IP ID increments. This causes Nmap to think it has found
an open port. Fortunately, parallel scanning helps here too. If Nmap scans 100 ports in a group
and the IP ID increase signals two open ports, Nmap splits the group into two fifty-port
subgroups. When Nmap does an IP ID scan on both subgroups, the total zombie IP ID increase
better be two again! Otherwise, Nmap will detect the inconsistency and rescan the groups. It also
modifies group size and scan timing based on the detected reliability rate of the zombie. If Nmap
detects too many inconsistent results, it will quit and ask the user to provide a better zombie.

Sometimes a packet trace is the best way to understand complex algorithms and techniques such
as these. Once again, the Nmap --packet-trace makes these trivial to produce when
desired. The remainder of this section provides an annotated packet trace of an actual seven port
idle scan. The IP addresses have been changed to Attacker, Zombie, and Target and some
irrelevant aspects of the trace lines (such as TCP window size) have been removed for clarity.

Attacker# nmap -sI Zombie -Pn -p20-25,110 -r --packet-trace -v
Target
Starting Nmap (http://nmap.org)
-Pn is necessary for stealth, otherwise ping packets would be sent to the target from Attacker's
real address. Version scanning would also expose the true address, and so -sV is not specified.
The -r option (turns off port randomization) is only used to make this example easier to follow.

Nmap firsts tests Zombie's IP ID sequence generation by sending six SYN/ACK packets to it and
analyzing the responses. This helps Nmap immediately weed out bad zombies. It is also
necessary because some systems (usually Microsoft Windows machines, though not all Windows
boxes do this) increment the IP ID by 256 for each packet sent rather than by one. This happens
on little-endian machines when they don't convert the IP ID to network byte order (big-endian).
Nmap uses these initial probes to detect and work around this problem.

SENT (0.0060s) TCP Attacker:51824 > Zombie:80 SA id=35996
SENT (0.0900s) TCP Attacker:51825 > Zombie:80 SA id=25914
SENT (0.1800s) TCP Attacker:51826 > Zombie:80 SA id=39591
RCVD (0.1550s) TCP Zombie:80 > Attacker:51824 R id=15669
SENT (0.2700s) TCP Attacker:51827 > Zombie:80 SA id=43604
RCVD (0.2380s) TCP Zombie:80 > Attacker:51825 R id=15670
SENT (0.3600s) TCP Attacker:51828 > Zombie:80 SA id=34186
RCVD (0.3280s) TCP Zombie:80 > Attacker:51826 R id=15671
SENT (0.4510s) TCP Attacker:51829 > Zombie:80 SA id=27949
RCVD (0.4190s) TCP Zombie:80 > Attacker:51827 R id=15672

RCVD (0.5090s) TCP Zombie:80 > Attacker:51828 R id=15673
RCVD (0.5990s) TCP Zombie:80 > Attacker:51829 R id=15674
Idlescan using zombie Zombie (Zombie:80); Class: Incremental
This test demonstrates that the zombie is working fine. Every IP ID was an increase of one over
the previous one. So the system appears to be idle and vulnerable to IP ID traffic detection. These
promising results are still subject to the next test, in which Nmap spoofs four packets to Zombie
as if they are coming from Target. Then it probes the zombie to ensure that the IP ID increased. If
it hasn't, then it is likely that either the attacker's ISP is blocking the spoofed packets or the
zombie uses a separate IP ID sequence counter for each host it communicates with. Both are
common occurrences, so Nmap always performs this test. The last-known Zombie IP ID was
15674, as shown above.

SENT (0.5990s) TCP Target:51823 > Zombie:80 SA id=1390
SENT (0.6510s) TCP Target:51823 > Zombie:80 SA id=24025
SENT (0.7110s) TCP Target:51823 > Zombie:80 SA id=15046
SENT (0.7710s) TCP Target:51823 > Zombie:80 SA id=48658
SENT (1.0800s) TCP Attacker:51987 > Zombie:80 SA id=27659
RCVD (1.2290s) TCP Zombie:80 > Attacker:51987 R id=15679
The four spoofed packets coupled with the probe from Attacker caused the Zombie to increase its
IP ID from 15674 to 15679. Perfect! Now the real scanning begins. Remember that 15679 is the
latest Zombie IP ID.

Initiating Idlescan against Target
SENT (1.2290s) TCP Zombie:80 > Target:20 S id=13200
SENT (1.2290s) TCP Zombie:80 > Target:21 S id=3737
SENT (1.2290s) TCP Zombie:80 > Target:22 S id=65290
SENT (1.2290s) TCP Zombie:80 > Target:23 S id=10516
SENT (1.4610s) TCP Attacker:52050 > Zombie:80 SA id=33202
RCVD (1.6090s) TCP Zombie:80 > Attacker:52050 R id=15680
Nmap probes ports 20-23. Then it probes Zombie and finds that the new IP ID is 15680, only one
higher than the previous value of 15679. There were no IP ID increments in between those two
known packets, meaning ports 20-23 are probably closed|filtered. It is also possible that
a SYN/ACK from a Target port has simply not arrived yet. In that case, Zombie has not
responded with a RST and thus its IP ID has not incremented. To ensure accuracy, Nmap will try
these ports again later.

SENT (1.8510s) TCP Attacker:51986 > Zombie:80 SA id=49278
RCVD (1.9990s) TCP Zombie:80 > Attacker:51986 R id=15681
Nmap probes again because four tenths of a second has gone by since the last probe it sent. The
Zombie (if not truly idle) could have communicated with other hosts during this period, which
would cause inaccuracies later if not detected here. Fortunately, that has not happened: the next
IP ID is 15681 as expected.

SENT (2.0000s) TCP Zombie:80 > Target:24 S id=23928
SENT (2.0000s) TCP Zombie:80 > Target:25 S id=50425
SENT (2.0000s) TCP Zombie:80 > Target:110 S id=14207

SENT (2.2300s) TCP Attacker:52026 > Zombie:80 SA id=26941
RCVD (2.3800s) TCP Zombie:80 > Attacker:52026 R id=15684
Nmap probes ports 24, 25, and 110 then queries the Zombie IP ID. It has jumped from 15681 to
15684. It skipped 15682 and 15683, meaning that two of those three ports are likely open. Nmap
cannot tell which two are open, and it could also be a false positive. So Nmap drills down deeper,
dividing the scan into subgroups.

SENT (2.6210s) TCP Attacker:51867 > Zombie:80 SA id=18869
RCVD (2.7690s) TCP Zombie:80 > Attacker:51867 R id=15685
SENT (2.7690s) TCP Zombie:80 > Target:24 S id=30023
SENT (2.7690s) TCP Zombie:80 > Target:25 S id=47253
SENT (3.0000s) TCP Attacker:51979 > Zombie:80 SA id=12077
RCVD (3.1480s) TCP Zombie:80 > Attacker:51979 R id=15687
The first subgroup is ports 24 and 25. The IP ID jumps from 15685 to 15687, meaning that one
of these two ports is most likely open. Nmap tries the divide and conquer approach again,
probing each port separately.

SENT (3.3910s) TCP Attacker:51826 > Zombie:80 SA id=32515
RCVD (3.5390s) TCP Zombie:80 > Attacker:51826 R id=15688
SENT (3.5390s) TCP Zombie:80 > Target:24 S id=47868
SENT (3.7710s) TCP Attacker:52012 > Zombie:80 SA id=14042
RCVD (3.9190s) TCP Zombie:80 > Attacker:52012 R id=15689
A port 24 probe shows no jump in the IP ID. So that port is not open. From the results so far,
Nmap has tentatively determined:

• Ports 20-23 are closed|filtered  

• Two of the ports 24, 25, and 110 are open  

• One of the ports 24 and 25 are open  

• Port 24 is closed|filtered  

Stare at this puzzle long enough and you'll find only one solution: ports 25 and 110 are open
while the other five are closed|filtered. Using this logic, Nmap could cease scanning and
print results now. It used to do so, but that produced too many false positive open ports when the
Zombie wasn't truly idle. So Nmap continues scanning to verify its results:

SENT (4.1600s) TCP Attacker:51858 > Zombie:80 SA id=6225
RCVD (4.3080s) TCP Zombie:80 > Attacker:51858 R id=15690
SENT (4.3080s) TCP Zombie:80 > Target:25 S id=35713
SENT (4.5410s) TCP Attacker:51856 > Zombie:80 SA id=28118
RCVD (4.6890s) TCP Zombie:80 > Attacker:51856 R id=15692

Discovered open port 25/tcp on Target
SENT (4.6900s) TCP Zombie:80 > Target:110 S id=9943
SENT (4.9210s) TCP Attacker:51836 > Zombie:80 SA id=62254
RCVD (5.0690s) TCP Zombie:80 > Attacker:51836 R id=15694
Discovered open port 110/tcp on Target
Probes of ports 25 and 110 show that they are open, as we deduced previously.

SENT (5.0690s) TCP Zombie:80 > Target:20 S id=8168
SENT (5.0690s) TCP Zombie:80 > Target:21 S id=36717
SENT (5.0690s) TCP Zombie:80 > Target:22 S id=4063
SENT (5.0690s) TCP Zombie:80 > Target:23 S id=54771
SENT (5.3200s) TCP Attacker:51962 > Zombie:80 SA id=38763
RCVD (5.4690s) TCP Zombie:80 > Attacker:51962 R id=15695
SENT (5.7910s) TCP Attacker:51887 > Zombie:80 SA id=61034
RCVD (5.9390s) TCP Zombie:80 > Attacker:51887 R id=15696
Just to be sure, Nmap tries ports 20-23 again. A Zombie IP ID query shows no sequence jump.
On the off chance that a SYN/ACK from Target to Zombie came in late, Nmap tries another IP
ID query. This again shows no open ports. Nmap is now sufficiently confident with its results to
print them.

The Idlescan took 5 seconds to scan 7 ports.
Nmap scan report for Target
PORT STATE SERVICE
20/tcp closed|filtered ftp-data
21/tcp closed|filtered ftp
22/tcp closed|filtered ssh
23/tcp closed|filtered telnet
24/tcp closed|filtered priv-mail
25/tcp open smtp
110/tcp open pop3

Nmap finished: 1 IP address (1 host up) scanned in 5.949 seconds
For complete details on the Nmap idle scan implementation, read idle_scan.cc from the
Nmap source code distribution.

https://nmap.org/book/idlescan.html

Finding a zombie device
Nmap NSE (Nmap Scripting Engine) provides the script IPIDSEQ to
detect vulnerable zombie devices. In the following example the script is
used to scan port 80 of random 1000 targets to look for vulnerable hosts,

https://nmap.org/book/idlescan.html

vulnerable hosts are classified as Incremental or little-endian
incremental. Additional examples of NSE use, despite unrelated to Idle
Scan are described and shown at How to scan for services and
vulnerabilities with Nmap and Using nmap scripts: Nmap banner grab.

IPIDSEQ example to randomly find zombie candidates:

“nmap -p80 --script ipidseq -iR 1000”,,, or “nmap --script ipidseq
192.168.1.0-255”

As you can see several vulnerable zombie
candidate hosts were found BUT they are all
false positive. The most difficult step when
carrying out an Idle scan is to find a
vulnerable zombie device, it is difficult due to
many reasons:

• Many ISP block this type of scan.
• Most of Operating Systems assign IP ID

randomly
• Well configured firewalls and honeypots

may return false positive.
In such cases when trying to execute the Idle
scan you’ll get the following error: 
“…cannot be used because it has not
returned any of our probes — perhaps it is
down or firewalled.  
QUITTING!”

If you are lucky in this step you will find an old
Windows system, an old IP camera system or
an old network printer, this last example is
recommended by the Nmap book.

When looking for vulnerable zombies you may
want to exceed Nmap and implement
additional tools like Shodan and faster
scanners. You can also run random scans
detecting versions to find a possible
vulnerable system.

For more information, please check this —>https://linuxhint.com/nmap_idle_scan_tutorial/

Fight Against Stealth Idle Scan
How can I protect my IP address?

You are typically assigned a dynamic (changes periodically) IP
address by your ISP. However, you can sign up for a static (never
changes) address if you wanted to run a web server from your
house. There is some debate as to which is safer, though it is
arguably more secure to have a dynamic IP address because “there
isn’t a constant target for the attacker,” says Steven Burn, Lead
Malware Intelligence Analyst at Malwarebytes.

It all boils down to the steps you take to secure your IP address.
Here’s how you can keep your IP address out of the hands of
criminals.

1. Use a Virtual Private Network (VPN): This protects your data
online by the use of encryption and proxy tunneling. It hides your IP
address and redirects your traffic through a separate server, making
it much safer for you online. VPN services are without question the

https://linuxhint.com/nmap_idle_scan_tutorial/
http://www.howtogeek.com/133680/htg-explains-what-is-a-vpn/

best practice for hiding your IP address, says Burn. They can be
found online with monthly service charges, however, the price might
not be worth it for every home user. There are free VPN services out
there, but don’t expect them to be fast enough for any streaming or
gaming.

In addition, you could run a proxy, which acts as an additional hub
through which Internet requests are processed, all while hiding your
IP address. It can determine legitimate over non-legitimate requests.

2. Update your router and firewall rules: Your router forwards
data between networks, and your firewall prevents unauthorized
access. Make sure you change the administrative password on your
router, since default passwords are frequently used by attackers to
break into your network. Each default password provided by your
ISP is the same and can be easily searched online. Also, set your
firewall rules to not allow any ping requests from the Internet. This
makes sure unauthorized visitors won’t get through.

3. Change privacy settings on instant messaging
applications: Only allow direct connections from contacts and
don’t accept calls or messages from people you don’t know.
Changing your settings to private makes it harder to find your IP
address because people who don’t know you cannot connect with
you.

4. Update your antivirus solution and add security
layers: Making sure you are caught up on all of your security
software’s updates ensures you’re protected from threats. Adding
additional security on top of your antivirus further protects you. For
instance, Malwarebytes Anti-Malware blocks malicious URLs
originating from phishing emails in addition to blocking bad sites
you might encounter.

Protecting your IP address is one aspect of protecting your identity.
Securing it through these steps is one more way to stay safe

http://www.labnol.org/internet/secure-your-wireless-wifi-network/10549/
https://support.skype.com/en/faq/FA140/how-do-i-manage-my-privacy-settings-in-skype-for-windows-desktop
https://support.skype.com/en/faq/FA140/how-do-i-manage-my-privacy-settings-in-skype-for-windows-desktop
https://support.skype.com/en/faq/FA140/how-do-i-manage-my-privacy-settings-in-skype-for-windows-desktop
https://www.malwarebytes.com/antimalware/

against the wide variety of attack vectors cybercriminals are using
today.

https://blog.malwarebytes.com/101/2016/07/how-to-protect-your-ip-address/

Defenses (in another word)

Fortunately, there are several defenses which can be deployed to prevent most IPID-related
attacks:

Network Administrators:

• Configure your firewalls/border routers to deny incoming packets with bogus source
addresses (eg. that appear to come from machines within your network, reserved IPs like
10.X.X.X or 192.168.X.X, localhost IPs 127.X.X.X, etc. Any good firewall guide should
provide more detailed guidance on these essential rules.

• Stateful firewall rules can also help against these sorts of attacks -- make sure your
firewall offers this feature and that it is enabled.

• Try to run operating systems with less predictable IP ID sequences, such as recent
versions of OpenBSD, Solaris, or Linux. While these operating systems are immune from
becoming zombies with the current version of Nmap, they may not stop all IPID-related
attacks. Further investigation is needed.

• Implement egress filtering to prevent spoofed packets from leaving your network. This
prevents your employees/students from launching some of these attacks.

Internet Service Providers (ISPs)
• The most important protection ISPs can offer is utilizing egress filtering to prevent

spoofed packets from leaving your networks. This prevents users from executing many
nasty attacks in addition to stopping Idle scanning. Besides helping the Internet, egress
filtering can save you from substantial costs investigating IP spoofing attacks.

Common Defense against Idle scan

Don’t use a public host in front of your firewall that uses a predictable IPID sequence.

Solaris and Linux are two operating systems that are not vulnerable to this type of

behavior.

https://blog.malwarebytes.com/101/2016/07/how-to-protect-your-ip-address/

We should Use a firewall that can maintain state-on connections, determine whether

someone initiated a phony session request, and drop those packets without a target host

response.

Use an ingress filter on your network to ensure that no packets enter your outside

boundary with a source address of your internal network.

With egress filter on your network to ensure that no packets leave your network with a

source address that isn’t a part of your internal network.

The latest versions of Linux, Solaris, OpenBSD, and Windows Vista are
not suitable as zombie, since the IPID has been implemented with
patches[4] that randomized the IPID.
The lower the latency between the attacker and the zombie, and
between the zombie and the target, the faster the scan will proceed.
Note that when a port is open, IPIDs increment by 2. Following is the
sequence:
1. Attacker to target -> SYN, target to zombie ->SYN/ACK, Zombie to
target -> RST (IPID increment by 1)
2. Now attacker tries to probe zombie for result. Attacker to Zombie -
>SYN/ACK, Zombie to Attacker -> RST (IPID increment by 1)
So, in this process IPID increments by 2 finally.

[[[[[[[[[[[[[[
I have Kali Linux installed in VirtualBox and would like to do an idle
scan. For this I need to find a suitable zombie PC. I'm using the
ipidseq script to find one. The script finds some IP addresses along

https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Solaris_(operating_system)
https://en.wikipedia.org/wiki/OpenBSD
https://en.wikipedia.org/wiki/Windows_Vista
https://en.wikipedia.org/wiki/Idle_scan#cite_note-4
https://en.wikipedia.org/wiki/Latency_(engineering)

with open ports. Unfortunately I executed the idle scan many many
times with Zenmap(nmap -sl zombieip -p -pN targetip) and
always get the same response from Zenmap, that the port on the
zombie IP cannot be used, "perhaps it's down or firewalled”.

_When doing the idlescan, you can specify one of the open ports on
the zombie machine. By default it attempts to use port 80 (according
to the manual). Typically the command you'll enter may be like:
#nmap -sI [zombie IP address] [target IP address]
but now, all you need to do is add the zombie open port number to the
command like:

#nmap -sI [zombie IP address]:[open zombie port number]
[target IP address]
with values:

#nmap -sI 192.168.1.3:31337 192.168.1.9
This worked for me in Backtrack 5's nmap so I'm assuming it will work
in Kali too.

]]]]]]]]]]]]]]

 Detection of Idle Stealth Port Scan Attack in
Network Intrusion Detection System using Snort

An intrusion detection system (IDS) is an ad-hoc network security
solution to protect flawed in computer systems or network. Intrusion
detection system works like a burglar alarm that goes off whenever
someone tries to tampers with or manages to get past other security
mechanisms like authentication, authorization of network. The major tasks
of IDS are to collect data from a computer system, analyze these data to
find security relative events, and report the results to the administrator [2].
Figure 1: Typical Locations for an Intrusion Detection System.

Methods of Intrusion Detection

There are three ways to detect intruders in different categories:
Signature based Detection Policy: In this technique predefine
signature matches the network traffic it sees against a list of attack
signatures in a packet. The main drawback of this policy is that, it
look predefine signatures and therefore it can miss newly developed
attacks which may contain malicious activity. Properly tuned
signature detection IDS might be high on false negative, but can be
low on false positive.

Anomaly based Detection Policy: It learns what “normal” traffic
for your network looks like and it has no predefine signature for
match the packet trace and will then alert you when it sees
something abnormal. In this technique some time anything new or
something different might have the chance of being labelled as
abnormal traffic, so properly tuned anomaly detection IDS might be
high on false positive, but low on false negative.

Hybrid Detection Policy: This technique is a combination of
anomaly and signature and takes the best features of both the
techniques used for detection purpose. This combined approach
gives existence of single IDS for monitoring the attacks in network

Categories of Intrusion Detection System

There are three categories to detect intruders-

Host Intrusion Detection System (HIDS): A host-based intrusion
detection system (HIDS) is a system that monitors a computer
system on which it is installed to detect an intrusion, and responds
by logging the activity and notifying the designated authority.. Host

based intrusion detection systems has ability to log analysis,
integrity management checking, detection of root kit and alerting.

Network Intrusion Detection System (NIDS): A network-based
IDS (NIDS) analyzes packets coming across a network connection
for data that look like its part of an attack. NIDS analyze network
traffic for attacks, using signature or anomaly detection (or both). Its
network interface card (NIC) runs in promiscuous mode, which
means that it captures all network traffic that goes by its NIC, not
just the traffic destined for the IDS system itself.

Distributed Intrusion Detection System(DIDS): Distributed
Intrusion Detection System (DIDS) is a combination of NIDS sensors
and HIDS sensors, or both, distributed across your organization,
and they reporting to a central correlation system. Attacks are
logged either periodically or continuously that generated on the
sensors to the server station where they can be stored in a central
database.

Overview of Snort Tool

Snort is an open source and freely available network based intrusion
detection and prevention system (available at http:// www.snort.org/
snort-downloads?). It can analyze the packet in real-time traffic on
any network. It analyzes protocol and also has the ability to detect
different type of attacks in network. Intrusion detection process of
snort based on rule, basically snort rule written by user apply to
checks against packet.

Snort can be configured to run in following three modes:

- Sniffer mode simply reads the packets of the network and
display packet detail to user in a console (screen).

- Packet Logger mode used to logs the packets to disk in given
format.

http://www.snort.org/snort-downloads?
http://www.snort.org/snort-downloads?

- Network Intrusion Detection System (NIDS) mode used to
performs detection and analysis of packet in real time network
traffic and generate alert if any suspicious activity found. This is
the most complex and configurable mode.

Components of Snort: Snort is basically divided into five
components and these components work together for every packet
to detect particular attacks and to generate alert and output in
appropriate format from the detection system. A Snort-based
Intrusion Detection System consists of the following major
components shown below:

Components of Snort Packet decoder: The packet decoder
takes the Layer 2 data sent over from the packet capture library and
takes it apart. First it decodes the Data Link frame (such as
Ethernet, Token Ring, or 802.11), then the IP protocol, then the TCP
or UDP packet. When finished decoding, Snort has all the protocols
information in all the right places for further processing.
Preprocessors: These are components or plug-ins which
performed after packet decoder and it can be mixed with Snort to
modify or arrange data packets to specific protocol before those
packets reach to the detection engine execute some operation to
find out if the packet is being used by an intruder and send it
specific task.

Detection engine: The detection engine is the heart of Snort. It
takes information from the packet decoder and preprocessors and
operates on it at the transport and application layers, comparing
what’s in the packet to information in its rules-based detection plug-
in. These rules contain signatures for attacks.

Logging and Alerting System: Logging and altering system
working depends on the output phase of the detection engine. It
used to log the activity and generate the alert based on the previous
component of snort.

Output Modules: Plug-ins of output modules are performed
various operations for the output generated by the logging and
alerting system of Snort. Output modules are very useful when we
show the attacks in web based user interface using third party tools
like BASE, Snorby and SGUIL.

Snort Rules: Most intruder activity has some sort of signature like
viruses. We create Snort rules to detect intruders using information
about these signatures. Signatures may be present in the payload
or in the header parts of a packet. Snort’s network intrusion
detection system is based on rules and these rules are based on
intruder signatures. These rules can be used to check various parts
of a data packet and rules looks like as follows. alert ip any any �
any any (msg:“snort bad rule”;content:hello; sid:10000099;) rule
header rule option

Idle Stealth Port Scan - In order to find out which services are
running on a specific host and can be attacked without revealing his
own IP address .The idle stealth scan (or zombie scan) is a stealthy
port scanning technique which allows an attacker to scan a target
machine ports without the need of sending a single IP packet
containing his own IP address directly to target. Instead he uses the
IP address of a third host (zombie). The zombie host also known as
idle host for port scans. Effectively, an idle port scan consists of
three steps that are repeated for each port:

- Internet Protocol Identification (IP ID): In IPv4, the Identification
(ID) field is a 16-bit value that is unique for every datagram for a
given source address, destination address, and protocol, such
that it does not repeat within the maximum datagram lifetime
[RFC6864]. The IPv4 ID field was originally intended for
fragmentation and reassembly.

Attacker Zombie Target Step 1. Probe the zombie's IP ID and
records it. The attacker sends a SYN/ACK to zombie. The zombie
not expecting SYN/ACK, send back a RST, disclosing it IP ID. Step
2. Forge a SYN packet from the zombie. The target sends a SYN/
ACK to zombie in response to the SYN that appear to come from
the zombie. The not expecting it, send back a RST, incrementing it
IP ID in the process. Step 3. Probe the zombie IP ID again. The
zombie IP ID has increased by 2 since step 1, so the port is open.
Idle Stealth Port Scan for Open Port.

Step 1. Probe the zombie's IP ID and records it. The attacker
sends a SYN/ACK to zombie. The zombie not expecting SYN/ACK,
send back a RST, disclosing it IP ID. Step 2. Forge a SYN packet
from the zombie. The target sends a RST (the port is closed) in
response to the SYN that appear to come from the zombie host.
The zombie ignores the unsolicited RST, leaving its IP ID
unchanged. Step 3. Probe the zombie IP ID again. The zombie IP ID
has increased by only 1 since step 1, so the port is not open.

For more information, please visit —>https://www.slideshare.net/
skpatel91/detection-of-idle-stealth-port-scan-attack-in-network-
intrusion-detection-system-using-snort

https://www.slideshare.net/skpatel91/detection-of-idle-stealth-port-scan-attack-in-network-intrusion-detection-system-using-snort
https://www.slideshare.net/skpatel91/detection-of-idle-stealth-port-scan-attack-in-network-intrusion-detection-system-using-snort
https://www.slideshare.net/skpatel91/detection-of-idle-stealth-port-scan-attack-in-network-intrusion-detection-system-using-snort
https://www.slideshare.net/skpatel91/detection-of-idle-stealth-port-scan-attack-in-network-intrusion-detection-system-using-snort

