
SQL injection is a method that takes advantages of how a 
server interact or works with a backend database server.


If you are working in a company, and/or you are 
responsible for analyze threats, one method to know if 
your application has been a target for the SQL injection, 
where some attackers tried to attack it; go to the log file 
of your server back-end side and try to find any logging 
attempts and/or errors.


In the description below, we provide more type along with 
these three (3) main type of SQL Injection.




Error-based SQLi 

Error-based SQLi is an in-band SQL Injection technique 

that relies on error messages thrown by the database 

server to obtain information about the structure of the 

database. In some cases, error-based SQL injection alone 

is enough for an attacker to enumerate an entire 

database.


While errors are very useful during the development phase 

of a web application, they should be disabled on a live 

site, or logged to a file with restricted access instead.


Union-based SQLi 

Union-based SQLi is an in-band SQL injection technique 

that leverages the UNION SQL operator to combine the 

results of two or more SELECT statements into a single 

result which is then returned as part of the HTTP 

response.


Inferential SQLi (Blind SQLi) 



Inferential SQL Injection, unlike in-band SQLi, may take 

longer for an attacker to exploit, however, it is just as 

dangerous as any other form of SQL Injection. In an 

inferential SQLi attack, no data is actually transferred via 

the web application and the attacker would not be able to 

see the result of an attack in-band (which is why such 

attacks are commonly referred to as “blind SQL Injection 

attacks”).


Instead, an attacker is able to reconstruct the database 

structure by sending payloads, observing the web 

application’s response and the resulting behavior of the 

database server, The two types of inferential SQL Injection 

are Blind-boolean-based SQLi and Blind-time-based 

SQLi.


Boolean-based (content-based) Blind SQLi 

Boolean-based SQL Injection is an inferential SQL 

Injection technique that relies on sending an SQL query to 

the database which forces the application to return a 

different result depending on whether the query returns a 

https://www.acunetix.com/websitesecurity/blind-sql-injection/
https://www.acunetix.com/websitesecurity/blind-sql-injection/


TRUE or FALSE result, Depending on the result, the 

content within the HTTP response will change, or remain 

the same.


This allows an attacker to infer if the payload used 

returned true or false, even though no data from the 

database is returned. This attack is typically slow 

(especially on large databases) since an attacker would 

need to enumerate a database, character by character.


Time-based Blind SQLi


Time-based SQL Injection is an inferential SQL Injection 

technique that relies on sending an SQL query to the 

database which forces the database to wait for a 

specified amount of time (in seconds) before responding. 

The response time will indicate to the attacker whether 

the result of the query is TRUE or FALSE, Depending on 

the result, an HTTP response will be returned with a delay, 

or returned immediately.


This allows an attacker to infer if the payload used 

returned true or false, even though no data from the 



database is returned. This attack is typically slow 

(especially on large databases) since an attacker would 

need to enumerate a database character by character.


Out-of-band SQLi 

Out-of-band SQL Injection is not very common, mostly 

because it depends on features being enabled on the 

database server being used by the web application. Out-

of-band SQL Injection occurs when an attacker is unable 

to use the same channel to launch the attack and gather 

results, Out-of-band techniques, offer an attacker an 

alternative to inferential time-based techniques, especially 

if the server responses are not very stable (making an 

inferential time-based attack unreliable).


Out-of-band SQLi techniques would rely on the database 

server’s ability to make DNS or HTTP requests to deliver 

data to an attacker. Such is the case with Microsoft SQL 

Server’s xp_dirtree command, which can be used to make 

DNS requests to a server an attacker controls; as well as 

Oracle Database’s UTL_HTTP package, which can be 


https://www.acunetix.com/blog/articles/blind-out-of-band-sql-injection-vulnerability-testing-added-acumonitor/


used to send HTTP requests from SQL and PL/SQL to a 

server an attacker controls.

https://medium.com/@hninja049/example-of-a-error-based-sql-injection-dce72530271c




https://medium.com/@hninja049/example-of-a-error-based-sql-injection-dce72530271c





SOME SQL_COMMANDS


The one that we mostly like to use is this one —> ‘1’ or 
‘1=1’




If a user_name is “admin”, we will bypass the password 
field like: ‘1’ or ‘1=1’. We copy and paste it in the 
password field. NOTE: We copy only the underlined ones, 
without those external quotes. Likewise, if we intend to 
ignore the password field, we can just type in the 
username field: ‘admin’ or ‘1=1’, again without the two 
external quotes, and we leave the password field empty.



